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Abstract 

The conventional Remote Procedure Call 
(RPC) model provides a distributed program 
execution model on an end-to-end client/server 
execution basis. In such a calling scenario, 
traditional RPC mechanisms are implemented 
under a basic assumption that the underlying 
network just provides a store-and-forward 
communication channel that will not modify the 
content of RPC packets. However, active networks 
provide another communication infrastructure that 
allows the intermediate active routers (nodes) to 
execute program codes and even to modify the 
packets. In this paper, three major issues will be 
addressed. The first issue is the binding 
mechanism in RPC invocation. The second issue 
is about the code execution. The third issue is 
about load balancing. In the end, an RPC 
paradigm for active networks is discussed for 
future development. 

1. Introduction 

The conventional Remote Procedure Call 
(RPC) model [2,3] provides a distributed program 
execution paradigm on an end-to-end client/server 
execution basis [5]. In this traditional paradigm, 
while a client program calls a remote procedure, 
the called procedure is executed by another 
process, usually on a remote server. Then the 
results are returned via the network to the 
requesting program. In such a calling scenario, 
traditional RPC mechanisms are implemented 
under the basic end-to-end argument [6] 
assumption that the underlying network just 
provides a store-and-forward communication 
channel that will not modify the content of RPC 
packets. Even in Java’s RMI (Remote Method 
Invocation) [11] and XML-RPC [15], the calling 
scenarios are all based on the traditional 
end-to-end argument. 

However, the emerging technology of active 
networks (AN) [5,10,12] provides another 
communication infrastructure that allows the 

intermediate active routers (nodes) to execute 
user-injected programs and even to modify the 
packets. The injected program code can be 
encapsulated in active packets [9,13,14], the 
packets containing program code, or downloaded 
from a specific code server [1]. Therefore, new 
network service protocols can be rapidly deployed. 
This new network infrastructure shows a 
possibility that the performance of traditional RPC 
calling mechanisms can be further improved by 
exploiting the benefits of active networks.  

To exploit the high programmability of active 
networks in an active RPC mechanism design, 
several challenges will be confronted. In this paper, 
three major issues are addressed and discussed. 
The first issue is remote service binding in RPC 
invocation. If RPC service binding can be 
performed in the intermediate active nodes, RPC 
execution is highly adaptable to the contemporary 
environment. The active nodes will dynamically 
select a suitable remote server, with lightest load 
or fastest response time, and forward the RPC 
requests to the server. However, since the 
intermediate active nodes will perform the binding 
task, transparency needs to be considered in 
dynamic RPC service binding. 

The second issue is about the performance 
optimization of code execution. Since active 
networks allow the intermediate active nodes 
execute user programs, remote RPC services 
should be performed in the proximate active node 
instead of the remote RPC server to minimize the 
communication delay and relieve the load of the 
remote server. In addition, the availability of RPC 
services is also highly increased. However, if the 
active node evicts the RPC code immediately after 
the end of the procedure is reached, reloading the 
code in next RPC calling will lengthen the RPC 
execution and burden the network load. To relieve 
the problem, a code cache needs to be 
incorporated. Cache management and RPC 
instantiation need to be further considered. 

The third issue is about load balancing. Since 
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the workload of a remote RPC server can be 
distributed over the intermediate active nodes in 
active networks, whether a RPC task needs to be 
migrated and performed in a proximate active 
node should depend on the node’s workload. In 
this paper, we discuss this load balancing issue 
and propose a tentative approach.  

In this paper, an active RPC paradigm for 
active networks is also discussed for future 
development. Currently, we are now designing 
active RPC modules and implementing the 
proposed mechanisms on the basis of the ANTS 
toolkit [13,14].  

The remainder of the paper is organized as 
follows. Section 2 briefly reviews the traditional 
RPC mechanisms and current development. 
Section 3 introduces the network model on which 
the proposed active RPC paradigm is built. 
Section 4 discusses three major design issues and 
depicts the approaches to facilitate active RPC. 
Finally, Section 5 concludes the paper and 
discusses the future work.  

2. RPC and AN Background  

To facilitate the cooperation between 
distributed processes, explicit message exchange 
plays an important role in many distributed 
systems. However, explicitly handling messages 
complicates the programming development of 
distributed tasks. To reduce the programming 
complexity, the RPC programming paradigm is 
proposed on the observation that procedure calls 
provide a more natural programming mechanism 
to let remote tasks be performed as in a single 
local computer [2,3]. In 1984, Birrell and Nelson 
introduced such an RPC mechanism in detail to 
show how to implement the RPC and solve the 
underlying subtle problems [2]. Figure 1 depicts a 
typical RPC calling scenario.  

The RPC mechanism is performed as follows. 
The client process calls the RPC procedures in a 
normal way as if the procedures are in a local 
library. The procedures in fact forward the 
requests to the underlying client stub module that 
is combined in the client process when the client 
program is compiled. Then the client stub builds 
the RPC messages and sends the messages to the 
remote server stub through the RPC OS module. 
After receiving the RPC request messages, the 
server stub unpacks the messages and dispatches 
them to the corresponding server procedures. The 
server procedure processes the request messages 
and sends the results back to the calling client 
process through the server stub and client stub. 

In this typical RPC calling scenario, the 
network model follows the end-to-end 
programming model [6]. That is, the underlying 
network just provides a store-and-forward 
communication channel. The intermediate routers 
can only perform the computation work up to the 
network layer of the OSI seven layer model. 
However, the active network architecture shows a 
new perspective that the active routers can 
perform computations on the user data [5,10,12]. 
Figure 2 depicts a typical scenario of application 
specific processing in active networks. Currently, 
several active network environments have been 
proposed and implemented such as ANTS in MIT 
[13,14], PLAN in the University of Pennsylvania 
[1,4], and Netscript in Columbia University [16]. 

In active routers, customized programs are 
executed in each respective execution 
environment (EE). The customized program code 
can be injected from active packets/capsules, or 
downloaded from code servers. Therefore, new 
network services and protocols can be 
dynamically deployed with high flexibility.    
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Figure 2: Application specific processing in

active networks. 

 Nowadays, although different technologies 
such as object-oriented technology and XML have 
been integrated with RPC mechanism design, 
current RPC development does not exploit the 
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benefits of the active networking architecture. For 
example, in Java’s RMI [11] and XML-RPC [15], 
the calling scenarios are all based on the 
traditional end-to-end argument. However, if the 
procedure code of the remote RPC server can be 
downloaded to the proximate active router and 
executed in the EE on the active router, three 
major benefits can be achieved.  

1. The RPC server’s load can be shared with 
the active router. Because the server’s load 
is distributed over the active routers, the 
RPC execution performance can be highly 
improved. 

2. Code caching can be supported to reduce the 
communication latency in further RPC calls. 
If other nearby clients call these cached RPC 
procedures, their performance will be also 
improved because lengthy remote 
communications are avoided. 

3. The availability of RPC services can be 
highly improved because the services are 
provided in the nearby active routers rather 
than the faraway RPC servers. 

However, some issues need to be discussed in 
such an active RPC mechanism design. To achieve 
load balancing, high performance, and high 
availability, code caching is the key component in 
active RPC design. Code caching should 
dynamically adapt to the variations of the network 
environment. 

3. Active RPC Model 

 Figure 3 depicts the proposed active RPC 
paradigm. In this paradigm, the architecture of 
client process and server process are basically 
same as in the traditional RPC architecture. 
However, the intermediate router now exploits the 
active networking technology. 

 In each active router, an RPC cache exists to 
cache the remote RPC procedure code. Besides the 

RPC cache, an active RPC monitor (ARM) 
operates on the active router to activate the cached 
RPC procedure. If the requested RPC procedure is 
not in the RPC cache, ARM will forward the RPC 
requests to the remote RPC server. The RPC 
server will perform the requested computations 
and send back the results with piggybacked RPC 
procedure code. However, if an active router 
between the requesting ARM and the remote RPC 
server along the forwarding path has the RPC 
procedure code, it will intercept the requests and 
perform the RPC server work. Therefore, the 
requests can be resolved as soon. 

 ARM also takes the responsibility for 
managing the RPC cache. When the amount of the 
available cache space is smaller than a predefined 
threshold, ARM performs replacements to evict 
least-recently used RPC code. When data in the 
active router are changed, ARM will reflect these 
changes back to the RPC server. Since there may 
be multiple RPC caches having the same RPC 
procedure code, data inconsistency is possible. 
When data inconsistency occurs, ARM performs 
resolving algorithms to control the consistency 
and invalidate or update remote inconsistent data. 

To facilitate RPC monitoring in the active 
router, the client stub and server stub need to be 
extended. The client stub needs to provide 
authentication information to check the integrity 
of the cached RPC code. The information is also 
used by ARM to get the RPC code from the 
remote RPC server. 

Since failures such as site crashes and 
network disconnections may occur, the server stub 
needs to handle the possible data inconsistency. 
Though a stateless server stub design can achieve 
high performance, non-idempotent RPC 
procedures may suffer from complicated failure 
handling. An AFS-like callback mechanism [8] 
could be used in the server stub design to make the 
caching and failure handling more efficient. To 
avoid data lost, the active router can store updated 
data in non-volatile memory first and remote them 
after the updates are committed in the RPC server.  
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Figure 3: Active RPC paradigm in active 

networks. 

4. Design Issues 

To extensively exploit the high 
programmability of active networks in an active 
RPC mechanism design, challenges will be 
confronted. In this section, we only address and 
discuss three major issues. The first issue is how 
to perform remote service binding in active RPC 
invocation. The second issue is about how to 
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effectively optimize the RPC execution 
performance with RPC caches. The last issue is 
load balancing.  

4.1 Dynamic Binding 

 Since ARM will intercept the RPC requests, 
RPC service binding is indeed performed on the 
active routers. Therefore, if the RPC service is 
replicated on another trusted server, ARM may 
actually bind the requests to this alternative server 
for some sake such as fault tolerance. Figure 4 
depicts the dynamic binding.  

In this figure, we assume there are two RPC 
servers. One is the primary RPC server A, and 
another is the backup RPC server B. When a client 
requests the RPC service, the request passes 
through two active routers. Now the active router 
B crashes. If dynamic binding is supported, the 
active router A will bind the RPC service to the 
backup RPC server B after it detects the crash 
failure of the active router B. Therefore, RPC 
service availability is highly increased. 

To support dynamic binding, an integrity 
checking mechanism is needed in ARM and RPC 
stub design. ARM needs to check the code 
integrity to ensure the RPC procedure code in the 
backup RPC server B is identical to the original 
RPC procedure code in the primary server A. 
There are two possible approaches. The first is to 
introduce a service directory server (SDS). In SDS, 
the RPC services are registered in a database. 
Then the active router can perform dynamic 
binding by enquiring the SDS database. Another 
approach is to generate a unique authentication 
key for each RPC service when the stub code is 
compiled. Then the client stub sends this key 
during each RPC invocation. The active router 
will first try to bind the primary RPC server. If the 
primary RPC server is out of service, the active 
router then broadcast the requests with the key. 

However, broadcasting may burden the 
network load but fail to find the backup RPC 
server. Therefore, the primary server may actively 
provide such information when the RPC code is 
first cached. The active router records the 
information for future use. Active clients may also 
explicitly specify several possible RPC servers 
when performing RPC invocations. The active 
router will try these candidates in RPC service 
binding. 

4.2 RPC Cache Management 

 To achieve high performance, RPC cache 
management is the key component in the active 
RPC mechanism. On each active router, ARM 
takes responsibility for RPC cache management. 
In addition to RPC code replacement, ARM needs 
to maintain related information. 
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Figure 4: Dynamic binding in active RPC

invocations. 

First of all, the RPC cache does not only 
need to cache the RPC procedure code, but also 
need to maintain the data processed by the code. If 
the allocated memory space of the data is not 
released after the RPC procedure returns, any 
modification on the data should be updated to the 
remote RPC server. Therefore, when another 
active router requests for the same RPC procedure 
code, it can see the previous updates. 

Handling non-volatile data is important in 
many RPC applications such as NFS [7]. However, 
though immediately updating modifications 
minimize the inconsistence period, it hinders RPC 
from achieving high performance and burdens the 
network load. To relieve this problem, we first 
classify RPC procedures into two categories: the 
idempotent RPC procedures accessing only local 
variables, and the non-idempotent RPC procedures 
that may access non-volatile variables. Only the 
RPC procedure code in the second category needs 
to be considered. While an active router caches 
such a RPC procedure, it also gets a callback 
token from the remote RPC server. Any 
modification will not be immediately updated until 
the procedure finishes the execution, or the remote 
RPC server issues the callback. If the update is 
initiated, the update will be propagated to the 
remote RPC server along the caching path. If the 
updating path is different with the caching path, 
the RPC server will invalidate the corresponding 
parts in other active routers’ caches. 

ARM also needs to handle exceptions 
related to these persistent data. While an exception 
occurs, ARM will immediately propagate the 
exception to the RPC server and other active 
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routers. The RPC server will then make sure every 
active router that has cached the RPC code is 
accordingly notified. 

4.3 Load Balancing 

 Load balancing is an important issue. If the 
active router is overloaded for performing RPC 
execution, its other tasks will suffer. Therefore, 
ARM needs to monitor the workload of the active 
router. When ARM detects that the load of the 
active router is saturated, it will forward the newly 
incoming RPC requests directly to next active 
router or the RPC server. 

 ARM needs also to monitor the resource 
consumption. When ARM detects that the amount 
of the available resource is lower than a threshold, 
it defers the incoming RPC requests for waiting 
for resource release. However, if the deferred 
period exceeds a timeout, the RPC requests will be 
forwarded to next active router or the RPC server. 

5. Conclusions and Future Work 

The emerging technology of active networks 
(AN) provides a new communication 
infrastructure that allows the intermediate active 
routers to execute user-injected programs and even 
to modify the packets. This new network 
infrastructure shows a possibility that the 
performance of traditional RPC calling 
mechanisms can be further improved by exploiting 
the benefits of active networks. 

In this paper, we have discussed three major 
design issues on the active RPC paradigm 
exploiting active networking technology. if the 
procedure code of the remote RPC server can be 
downloaded to the proximate active router and 
executed in the EE on the active router, three 
major benefits can be achieved.  

1. The RPC server’s load can be shared with 
the active router. Because the server’s load 
is distributed over the active routers, the 
RPC execution performance can be highly 
improved. 

2. Code caching can be supported to reduce the 
communication latency in further RPC calls. 
If other nearby clients call these cached RPC 
procedures, their performance will be also 
improved because lengthy remote 
communications are avoided. 

3. The availability of RPC services can be 
highly improved because the services are 

provided in the nearby active routers rather 
than the faraway RPC servers. 

There are still many design challenges in 
developing the active RPC. For example, 
object-oriented method invocation is needed for 
distributed object-oriented computing. However, 
handling OO technology in RPC invocation is 
more complicated. Furthermore, security and RPC 
authentication need to be in-depth considered to 
avoid malicious operations.  

In the future, we will first develop active 
RPC generation tools and implement a prototype 
system to demonstrate the feasibility. A 
comprehensive performance evaluation will be 
conducted to find the performance bottleneck. 
Building a more complicated experimental 
environment is expected in the next stage.  
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