
2002主動式網路研討會

Issues on the RPC Paradigms in Active Networks

Cheng-Zen Yang and Chien-Wen Chen
Department of Computer Engineering and Science

Yuan Ze University
Chungli, Taiwan, R.O.C.

E-mail: {czyang,antony}@syslab.cse.yzu.edu.tw

Abstract

The conventional Remote Procedure Call
(RPC) model provides a distributed program
execution model on an end-to-end client/server
execution basis. In such a calling scenario,
traditional RPC mechanisms are implemented
under a basic assumption that the underlying
network just provides a store-and-forward
communication channel that will not modify the
content of RPC packets. However, active networks
provide another communication infrastructure that
allows the intermediate active routers (nodes) to
execute program codes and even to modify the
packets. In this paper, three major issues will be
addressed. The first issue is the binding
mechanism in RPC invocation. The second issue
is about the code execution. The third issue is
about load balancing. In the end, an RPC
paradigm for active networks is discussed for
future development.

1. Introduction

The conventional Remote Procedure Call
(RPC) model [2,3] provides a distributed program
execution paradigm on an end-to-end client/server
execution basis [5]. In this traditional paradigm,
while a client program calls a remote procedure,
the called procedure is executed by another
process, usually on a remote server. Then the
results are returned via the network to the
requesting program. In such a calling scenario,
traditional RPC mechanisms are implemented
under the basic end-to-end argument [6]
assumption that the underlying network just
provides a store-and-forward communication
channel that will not modify the content of RPC
packets. Even in Java’s RMI (Remote Method
Invocation) [11] and XML-RPC [15], the calling
scenarios are all based on the traditional
end-to-end argument.

However, the emerging technology of active
networks (AN) [5,10,12] provides another
communication infrastructure that allows the

intermediate active routers (nodes) to execute
user-injected programs and even to modify the
packets. The injected program code can be
encapsulated in active packets [9,13,14], the
packets containing program code, or downloaded
from a specific code server [1]. Therefore, new
network service protocols can be rapidly deployed.
This new network infrastructure shows a
possibility that the performance of traditional RPC
calling mechanisms can be further improved by
exploiting the benefits of active networks.

To exploit the high programmability of active
networks in an active RPC mechanism design,
several challenges will be confronted. In this paper,
three major issues are addressed and discussed.
The first issue is remote service binding in RPC
invocation. If RPC service binding can be
performed in the intermediate active nodes, RPC
execution is highly adaptable to the contemporary
environment. The active nodes will dynamically
select a suitable remote server, with lightest load
or fastest response time, and forward the RPC
requests to the server. However, since the
intermediate active nodes will perform the binding
task, transparency needs to be considered in
dynamic RPC service binding.

The second issue is about the performance
optimization of code execution. Since active
networks allow the intermediate active nodes
execute user programs, remote RPC services
should be performed in the proximate active node
instead of the remote RPC server to minimize the
communication delay and relieve the load of the
remote server. In addition, the availability of RPC
services is also highly increased. However, if the
active node evicts the RPC code immediately after
the end of the procedure is reached, reloading the
code in next RPC calling will lengthen the RPC
execution and burden the network load. To relieve
the problem, a code cache needs to be
incorporated. Cache management and RPC
instantiation need to be further considered.

The third issue is about load balancing. Since

 100

mailto:czyang,antony}@syslab.cse.yzu.edu.tw

2002主動式網路研討會

the workload of a remote RPC server can be
distributed over the intermediate active nodes in
active networks, whether a RPC task needs to be
migrated and performed in a proximate active
node should depend on the node’s workload. In
this paper, we discuss this load balancing issue
and propose a tentative approach.

In this paper, an active RPC paradigm for
active networks is also discussed for future
development. Currently, we are now designing
active RPC modules and implementing the
proposed mechanisms on the basis of the ANTS
toolkit [13,14].

The remainder of the paper is organized as
follows. Section 2 briefly reviews the traditional
RPC mechanisms and current development.
Section 3 introduces the network model on which
the proposed active RPC paradigm is built.
Section 4 discusses three major design issues and
depicts the approaches to facilitate active RPC.
Finally, Section 5 concludes the paper and
discusses the future work.

2. RPC and AN Background

To facilitate the cooperation between
distributed processes, explicit message exchange
plays an important role in many distributed
systems. However, explicitly handling messages
complicates the programming development of
distributed tasks. To reduce the programming
complexity, the RPC programming paradigm is
proposed on the observation that procedure calls
provide a more natural programming mechanism
to let remote tasks be performed as in a single
local computer [2,3]. In 1984, Birrell and Nelson
introduced such an RPC mechanism in detail to
show how to implement the RPC and solve the
underlying subtle problems [2]. Figure 1 depicts a
typical RPC calling scenario.

The RPC mechanism is performed as follows.
The client process calls the RPC procedures in a
normal way as if the procedures are in a local
library. The procedures in fact forward the
requests to the underlying client stub module that
is combined in the client process when the client
program is compiled. Then the client stub builds
the RPC messages and sends the messages to the
remote server stub through the RPC OS module.
After receiving the RPC request messages, the
server stub unpacks the messages and dispatches
them to the corresponding server procedures. The
server procedure processes the request messages
and sends the results back to the calling client
process through the server stub and client stub.

In this typical RPC calling scenario, the
network model follows the end-to-end
programming model [6]. That is, the underlying
network just provides a store-and-forward
communication channel. The intermediate routers
can only perform the computation work up to the
network layer of the OSI seven layer model.
However, the active network architecture shows a
new perspective that the active routers can
perform computations on the user data [5,10,12].
Figure 2 depicts a typical scenario of application
specific processing in active networks. Currently,
several active network environments have been
proposed and implemented such as ANTS in MIT
[13,14], PLAN in the University of Pennsylvania
[1,4], and Netscript in Columbia University [16].

In active routers, customized programs are
executed in each respective execution
environment (EE). The customized program code
can be injected from active packets/capsules, or
downloaded from code servers. Therefore, new
network services and protocols can be
dynamically deployed with high flexibility.

Active Client

Client Process

IP_send

Device

Active Server

Server Process

IP_recv

Device

IP_active

Device

IP_active

Device

Active
Router

Active
Router

Figure 2: Application specific processing in

active networks.

 Nowadays, although different technologies
such as object-oriented technology and XML have
been integrated with RPC mechanism design,
current RPC development does not exploit the

Client Stub

Client Machine

Client Process

RPC System Module

Server Stub

Server Machine

Server Process

RPC System Module

Network
Figure 1: The traditional RPC paradigm.
101

2002主動式網路研討會

benefits of the active networking architecture. For
example, in Java’s RMI [11] and XML-RPC [15],
the calling scenarios are all based on the
traditional end-to-end argument. However, if the
procedure code of the remote RPC server can be
downloaded to the proximate active router and
executed in the EE on the active router, three
major benefits can be achieved.

1. The RPC server’s load can be shared with
the active router. Because the server’s load
is distributed over the active routers, the
RPC execution performance can be highly
improved.

2. Code caching can be supported to reduce the
communication latency in further RPC calls.
If other nearby clients call these cached RPC
procedures, their performance will be also
improved because lengthy remote
communications are avoided.

3. The availability of RPC services can be
highly improved because the services are
provided in the nearby active routers rather
than the faraway RPC servers.

However, some issues need to be discussed in
such an active RPC mechanism design. To achieve
load balancing, high performance, and high
availability, code caching is the key component in
active RPC design. Code caching should
dynamically adapt to the variations of the network
environment.

3. Active RPC Model

 Figure 3 depicts the proposed active RPC
paradigm. In this paradigm, the architecture of
client process and server process are basically
same as in the traditional RPC architecture.
However, the intermediate router now exploits the
active networking technology.

 In each active router, an RPC cache exists to
cache the remote RPC procedure code. Besides the

RPC cache, an active RPC monitor (ARM)
operates on the active router to activate the cached
RPC procedure. If the requested RPC procedure is
not in the RPC cache, ARM will forward the RPC
requests to the remote RPC server. The RPC
server will perform the requested computations
and send back the results with piggybacked RPC
procedure code. However, if an active router
between the requesting ARM and the remote RPC
server along the forwarding path has the RPC
procedure code, it will intercept the requests and
perform the RPC server work. Therefore, the
requests can be resolved as soon.

 ARM also takes the responsibility for
managing the RPC cache. When the amount of the
available cache space is smaller than a predefined
threshold, ARM performs replacements to evict
least-recently used RPC code. When data in the
active router are changed, ARM will reflect these
changes back to the RPC server. Since there may
be multiple RPC caches having the same RPC
procedure code, data inconsistency is possible.
When data inconsistency occurs, ARM performs
resolving algorithms to control the consistency
and invalidate or update remote inconsistent data.

To facilitate RPC monitoring in the active
router, the client stub and server stub need to be
extended. The client stub needs to provide
authentication information to check the integrity
of the cached RPC code. The information is also
used by ARM to get the RPC code from the
remote RPC server.

Since failures such as site crashes and
network disconnections may occur, the server stub
needs to handle the possible data inconsistency.
Though a stateless server stub design can achieve
high performance, non-idempotent RPC
procedures may suffer from complicated failure
handling. An AFS-like callback mechanism [8]
could be used in the server stub design to make the
caching and failure handling more efficient. To
avoid data lost, the active router can store updated
data in non-volatile memory first and remote them
after the updates are committed in the RPC server.

Active Client

Client Process

IP_send

Device

Active Server

Server Process

IP_recv

Device

RPC
Cache

Device

RPC
Cache

Device

Active
Router

Active
Router

Client Stub Server Stub

RPC code download

Figure 3: Active RPC paradigm in active

networks.

4. Design Issues

To extensively exploit the high
programmability of active networks in an active
RPC mechanism design, challenges will be
confronted. In this section, we only address and
discuss three major issues. The first issue is how
to perform remote service binding in active RPC
invocation. The second issue is about how to

 102

2002主動式網路研討會

effectively optimize the RPC execution
performance with RPC caches. The last issue is
load balancing.

4.1 Dynamic Binding

 Since ARM will intercept the RPC requests,
RPC service binding is indeed performed on the
active routers. Therefore, if the RPC service is
replicated on another trusted server, ARM may
actually bind the requests to this alternative server
for some sake such as fault tolerance. Figure 4
depicts the dynamic binding.

In this figure, we assume there are two RPC
servers. One is the primary RPC server A, and
another is the backup RPC server B. When a client
requests the RPC service, the request passes
through two active routers. Now the active router
B crashes. If dynamic binding is supported, the
active router A will bind the RPC service to the
backup RPC server B after it detects the crash
failure of the active router B. Therefore, RPC
service availability is highly increased.

To support dynamic binding, an integrity
checking mechanism is needed in ARM and RPC
stub design. ARM needs to check the code
integrity to ensure the RPC procedure code in the
backup RPC server B is identical to the original
RPC procedure code in the primary server A.
There are two possible approaches. The first is to
introduce a service directory server (SDS). In SDS,
the RPC services are registered in a database.
Then the active router can perform dynamic
binding by enquiring the SDS database. Another
approach is to generate a unique authentication
key for each RPC service when the stub code is
compiled. Then the client stub sends this key
during each RPC invocation. The active router
will first try to bind the primary RPC server. If the
primary RPC server is out of service, the active
router then broadcast the requests with the key.

However, broadcasting may burden the
network load but fail to find the backup RPC
server. Therefore, the primary server may actively
provide such information when the RPC code is
first cached. The active router records the
information for future use. Active clients may also
explicitly specify several possible RPC servers
when performing RPC invocations. The active
router will try these candidates in RPC service
binding.

4.2 RPC Cache Management

 To achieve high performance, RPC cache
management is the key component in the active
RPC mechanism. On each active router, ARM
takes responsibility for RPC cache management.
In addition to RPC code replacement, ARM needs
to maintain related information.

Active
Client Active

Router A

Primary
RPC Server A

Backup RPC
Server B

Active
Router B

Figure 4: Dynamic binding in active RPC

invocations.

First of all, the RPC cache does not only
need to cache the RPC procedure code, but also
need to maintain the data processed by the code. If
the allocated memory space of the data is not
released after the RPC procedure returns, any
modification on the data should be updated to the
remote RPC server. Therefore, when another
active router requests for the same RPC procedure
code, it can see the previous updates.

Handling non-volatile data is important in
many RPC applications such as NFS [7]. However,
though immediately updating modifications
minimize the inconsistence period, it hinders RPC
from achieving high performance and burdens the
network load. To relieve this problem, we first
classify RPC procedures into two categories: the
idempotent RPC procedures accessing only local
variables, and the non-idempotent RPC procedures
that may access non-volatile variables. Only the
RPC procedure code in the second category needs
to be considered. While an active router caches
such a RPC procedure, it also gets a callback
token from the remote RPC server. Any
modification will not be immediately updated until
the procedure finishes the execution, or the remote
RPC server issues the callback. If the update is
initiated, the update will be propagated to the
remote RPC server along the caching path. If the
updating path is different with the caching path,
the RPC server will invalidate the corresponding
parts in other active routers’ caches.

ARM also needs to handle exceptions
related to these persistent data. While an exception
occurs, ARM will immediately propagate the
exception to the RPC server and other active

 103

2002主動式網路研討會

routers. The RPC server will then make sure every
active router that has cached the RPC code is
accordingly notified.

4.3 Load Balancing

 Load balancing is an important issue. If the
active router is overloaded for performing RPC
execution, its other tasks will suffer. Therefore,
ARM needs to monitor the workload of the active
router. When ARM detects that the load of the
active router is saturated, it will forward the newly
incoming RPC requests directly to next active
router or the RPC server.

 ARM needs also to monitor the resource
consumption. When ARM detects that the amount
of the available resource is lower than a threshold,
it defers the incoming RPC requests for waiting
for resource release. However, if the deferred
period exceeds a timeout, the RPC requests will be
forwarded to next active router or the RPC server.

5. Conclusions and Future Work

The emerging technology of active networks
(AN) provides a new communication
infrastructure that allows the intermediate active
routers to execute user-injected programs and even
to modify the packets. This new network
infrastructure shows a possibility that the
performance of traditional RPC calling
mechanisms can be further improved by exploiting
the benefits of active networks.

In this paper, we have discussed three major
design issues on the active RPC paradigm
exploiting active networking technology. if the
procedure code of the remote RPC server can be
downloaded to the proximate active router and
executed in the EE on the active router, three
major benefits can be achieved.

1. The RPC server’s load can be shared with
the active router. Because the server’s load
is distributed over the active routers, the
RPC execution performance can be highly
improved.

2. Code caching can be supported to reduce the
communication latency in further RPC calls.
If other nearby clients call these cached RPC
procedures, their performance will be also
improved because lengthy remote
communications are avoided.

3. The availability of RPC services can be
highly improved because the services are

provided in the nearby active routers rather
than the faraway RPC servers.

There are still many design challenges in
developing the active RPC. For example,
object-oriented method invocation is needed for
distributed object-oriented computing. However,
handling OO technology in RPC invocation is
more complicated. Furthermore, security and RPC
authentication need to be in-depth considered to
avoid malicious operations.

In the future, we will first develop active
RPC generation tools and implement a prototype
system to demonstrate the feasibility. A
comprehensive performance evaluation will be
conducted to find the performance bottleneck.
Building a more complicated experimental
environment is expected in the next stage.

References

1. D. S. Alexander, W. A. Arbaugh, M. W.
Hichs, P. Kakkar, A. D. Keromytis, J. T.
Moore, C. A. Gunter, S. M. Nettles, and J. M.
Smith. “The SwitchWare Active Network
Architecture.” IEEE Network, pp. 29-36,
May/June 1998.

2. A. D. Birrell and B. J. Nelson.
“Implementing Remote Procedure Calls.”
ACM Trans. on Computer Systems, Vol. 2,
No. 1, pp. 39-59, February 1984.

3. J. Bloomer. Power Programming with RPC.
O'Reilly & Associates, Inc., 1991.

4. M. Hicks, P. Kakkar, J. T. Moore, C. A.
Gunter and S. Nettles. “PLAN: A Packet
Language for Active Networks.” In Proc. of Int’l
Conf. Functional Programming, pp. 86-93, 1998.

5. K. Psounis. “Active Networks: Applications,
Security, Safety, And Architectures.” IEEE
Communications Surveys, pp. 2-16, First
Quarter 1999.

6. J. H. Saltzer, D. P. Reed, and D. D. Clark.
“End-To-End Arguments in System Design.”
ACM Trans. on Computer Systems, Vol. 2,
No. 4, pp. 277-288, November 1984.

7. R. Sandberg, D. Goldberg, S. Kleiman, D.
Walsh and B. Lyon. “Design and

 104

2002主動式網路研討會

Implementation of the Sun Network File
System.” In Proc. of 1995 USENIX
Conference, pp.119-130, June 1985.

8. M. Satyanarayanan. “Scalable, Secure, and
Highly Available Distributed File Access.”
IEEE Computer, Vol. 23, No. 5, pp. 9-21,
May 1990.

9. B. Schwartz, A. W. Jackson, W. T. Strayer,
W. Zhou, R. D. Rockwell, And C. Partridge.
“Smart Packets: Applying Active Networks
to Network Management.” ACM Trans. on
Computer Systems, Vol. 18, No. 1, pp. 67-88,
February 2000.

10. J. M. Smith, K. L. Calvert, S. L. Murphy, H.
K. Orman, L. L. Peterson. “Activating
Networks: A Progress Report.” IEEE
Computer, Vol. 32, No. 4, pp. 32-41, April
1999.

11. Sun Microsystems, Inc. Java Remote
Method Invocation Specification. Available
from http://www.sun.com/, October 1998.

12. D. Tennenhouse, J. M. Smith, W. D.
Sincoskie, D. J. Wetherall, and G. J. Minden.
“A Survey of Active Network Research.”
IEEE Communications Magazine, pp. 80-86,
January 1997.

13. D. Wetherall. “Active Network Vision and
Reality: Lessons from a Capsule-based
System.” In Proc. of the 17th ACM Symp. on
Operating Systems principles (SOSP’99), pp.
64-79, 1999.

14. D. Wetherall, J. Guttag, and D. Tennenhouse.
“ANTS: Network Services without the Red
Tape.” IEEE Computer, Vol. 32, No. 4, pp.
32-41, April 1999.

15. “XML-RPC Specification (Userland)".
Updated 16, October 1999.
http://www.xmlrpc.com/spec.

16. Y. Yemini, and S. da Silva. “Towards
Programmable Networks”. In Proc. of
FIP/IEEE International Workshop on
Distributed Systems: Operations and
Management, October 1996.

 105

http://www.xmlrpc.com/spec

	Abstract
	1. Introduction
	
	References

