
Cache Consistency Control in ActiveRMI*
Meng-Chun Wueng and Cheng-Zen Yang

Department of Computer Science and Engineering
Yuan Ze University

Chungli, Taiwan, R.O.C.
E-mail: {jun,czyang}@syslab.cse.yzu.edu.tw

* This research was supported in part by National Science Council
under grant NSC91-2745-P-155-003.

Abstract
In the traditional end-to-end network model, the

intermediate routers are only responsible for storing and
forwarding the packets from one endpoint to another
endpoint. In such a model, the Remote Procedure Call
(RPC) methodology was proposed to provide a concise
and transparent programming interface. As the
following development, an RPC-like mechanism RMI
(Remote Method Invocation) has been incorporated in
Java. However, in a large-scale environment the
RPC/RMI paradigm faces many limitations in system
scalability. In our previous research, we have proposed
a new programming paradigm called ActiveRMI
(Active Remote Method Invocation) to improve the
scalability problem of the traditional RMI mechanism
by using active network technology. ActiveRMI
provides a hierarchical code-caching scheme in which
remote ActiveRMI code is cached and built up at
proximate active routers to process RMI requests.
Therefore, the server load is shared and the amount of
network traffic is reduced. However, consistency
problem arises if multiple copies of ActiveRMI code
exist at different active routers. In this paper, our
approaches for cache consistency control in ActiveRMI
are elaborated. More comprehensive experiments for
different distributed applications are on our schedule to
understand the potential bottleneck problems in the
current design.

Keywords: ActiveRMI, Java RMI, Active networks,
Code caching technology, Consistency protocol.

1. Introduction
In traditional network architecture, the intermediate

routers are only responsible for storing and forwarding
the packets from one endpoint to another endpoint. This
presents an end-to-end network model in which the
routers perform computations only for packet
transmission. In such a scenario, the client-server
computation model is widely employed in distributed
application design and socket programming is the most
common programming methodology. Although
applications designed in socket programming are
efficient, application development is tedious because
programmers need to control every transmission detail.
Therefore, in 1984 the Remote Procedure Call (RPC)

methodology was proposed to provide a concise and
transparent programming interface [1].

However, in a large-scale environment the RPC
paradigm faces many limitations in system scalability.
When a large number of client requests burst to an RPC
server, the RPC service performance will be degraded
due to two following situations. One is that the
workload of the server is highly increased, and the
server thus becomes the system bottleneck. Another is
that the amount of network traffic to the server is also
highly boosted. Therefore, not only the clients wait for
the responses for a long time, but also the performance
of all network services of the same area is influenced.
These two situations all hurt the system scalability. In
addition to the scalability problem, RPC services are
fragile when server or network failures occur. Although
introducing a multi-tier design can relieve these
problematic situations, application development is thus
complicated. The clients need to be aware of these
explicitly added middle tiers. As discussed in [2], active
networks provide a new network infrastructure that can
be used to leverage the RMI performance
improvements.

In our previous research [4], an active-network-
based RMI mechanism called ActiveRMI (Active
Remote Method Invocation) has been proposed. As
depicted in Figure 1, RMI code can be cached at
intermediate active routers in ActiveRMI so that RMI
requests can be intercepted and served at the proximate
active routers. Three advantages are thus achieved. First,
the server bottleneck problem is alleviated because the
server workload is shared with intermediate active
routers. Second, the amount of the network traffic to the
RMI server is reduced since the packet transmission is
localized between the clients and the nearby active
routers. Third, the user response time is thus shortened.
Therefore, the scalability and RMI performance in
ActiveRMI is further improved.

Although caching ActiveRMI code at proximate
active routers improves the system scalability and RMI
performance, the extra overhead for maintaining the
consistency of the cached ActiveRMI code may not be
ignorable and thus degrade ActiveRMI performance
instead. This overhead is incurred because the code or
data of the cached ActiveRMI code may be inconsistent

Figure 1: Architecture overview of ActiveRMI.

when the ActiveRMI code is modified at the remote
RMI server without updating the cached code. Besides,
clients may modify the persistent data at active routers
without updating the original copy at the RMI server.
Data inconsistency is thus introduced. Both situations
show that consistency control is not a trivial issue in the
design of ActiveRMI.

In this paper, four approaches incorporated in
ActiveRMI consistency control are elaborated. They
include callback promise, delayed-write, session
guarantee, and write-invalidate. Furthermore, because
the code can be cached at intermediate active routers,
ActiveRMI employs a hierarchical distributed caching
scheme to avoid unnecessary long-distance capsule
transmission. If an ActiveRMI service is frequently
invoked, its code is cached at multiple intermediate
active routers along the network path to the RMI server.
The cached ActiveRMI services and their valid data can
be thus shared with other proximal clients for the future
requests.

The remainder of the paper is organized as follows.
Section 2 briefly reviews previous studies about the
consistency maintenance of object caching. Section 3
provides a brief background description of ActiveRMI.
The execution of a cached ActiveRMI application is
mainly explained. Then the design of the code and data
consistency maintenance in ActiveRMI is separately
elaborated in Section 4 and Section 5. Finally, Section 6
concludes the paper.

2. Related Work

Caching technology has been proven to be an
effective way in improving the system scalability. Many
research efforts have been investigated on caching
technology to enhance RMI performance of distributed
object systems [5,6,7].

In 2000, Krishnaswamy et al. have adopted caching
technology to provide the immediate requirements for
running interactive distributed applications [5].
Everhard and Tripathi have presented a middleware so
that caching technology can be insensibly added to
existing RMI applications [6]. Furthermore, to reduce
the overhead of maintaining the consistency of the
cached copies and provide a scalable consistency
protocol, Ahamad and Kordale [7] have proposed a
local consistency (LC) mechanism by allowing users to
control over the updates of the cached objects. However,

these approaches do not consider incorporating the
emerging active network technology. Therefore, the
caching infrastructure can only be a simple two-level
structure.

In ActiveRMI, a hierarchical caching scheme is
provided so that the network traffic for maintaining the
consistency can be reduced. Valid code or data can be
fetched by traveling up the hierarchy rather than only
remote servers. Furthermore, client numbers that remote
servers need to handle are reduced because server
workload is shared with intermediate active routers.
Therefore, the overall ActiveRMI performance can be
improved efficiently.

3. ActiveRMI Background
ActiveRMI was first proposed in [4]. The traditional

Java RMI mechanism is improved by using active
networks technology. This section provides a brief
introduction to ActiveRMI as the background for
further explanation on our design of consistency
control.

3.1 Pre-processing ActiveRMI Applications
Because of the programmable characteristic of active

networks, applications can be deployed over the
network by transmitting active packets called capsules.
The code is carried in capsules and injected into active
routers. To deploy ActiveRMI services, capsule-related
code must be automatically generated in ActiveRMI
applications

As depicted in Figure 2, an ActiveRMI application
contains several Java parts: an interface, a client stub,
and a server skeleton. The application code is then
parsed and transferred to add ANTS-specific code.
MIT’s ANTS is taken as the active network basis
because of its versatility. After the pre-processing,
ActiveRMI services can be deployed with capsules, and
cached at ActiveRMI-enabled routers. When an
ActiveRMI service is cached, ANTS can initiate it to
provide the RMI service at the active router.

Figure 2: The cached ActiveRMI code.

Figure 3: The flowchart of the ActiveRMI invocation protocol.

3.2 ActiveRMI Invocation
In ActiveRMI, an invocation protocol is designed to

initiate ActiveRMI services at proximate active routers.
Figure 3 describes the flowchart of the ActiveRMI
invocation protocol. When an RMI request is
intercepted by a proximate active router, the active
router will check whether the required code is cached. If
the required code has been cached and is still valid, it
will be activated to process RMI request immediately.
Otherwise, the active router sends a Lookup message
to a remote registry to find the required RMI service.
The required RMI service can be downloaded either
from the original RMI server or an active router that is
near the RMI server and has a valid cache copy. After
the ActiveRMI code is downloaded, ANTS then creates
the execution environment and initiates the service.
Finally, the response will be sent back to the client and
the ActiveRMI service is stopped.

4. Code Consistency Maintenance
Because an ActiveRMI service can be cached at

several intermediate active routers, code inconsistency
may occurs if the ActiveRMI code is modified at the
server but not updated at the routers. To let the cached
ActiveRMI code be up-to-date without incurring a large
amount of overheads, an effective updating is needed.

In our design of code consistency maintenance, two
approaches are adopted for performance consideration.
The first approach is to minimize the amount of the
network traffic incurred in maintaining the code
consistency. Only the difference of the updated
ActiveRMI code is transported. The second approach is
for fault-tolerance consideration. A TTL (Time-To-Live)
scheme is used to assign a lifetime to the cached
ActiveRMI code to avoid invocating obsolete RMI
services when network partitions occur.

When the lifetime of a cached ActiveRMI service is
expired, the active router will query the RMI server
whether the ActiveRMI code is updated during next
invocation. If the code is modified, the fresh ActiveRMI
code is downloaded to the active router. Otherwise, the
TTL of the cached ActiveRMI code is reset.

5. Data Consistency Maintenance
In addition to code consistency maintenance, data

consistency maintenance cannot be ignored in
ActiveRMI design. Three design considerations are
addressed. First, the sharing state of a cached
ActiveRMI code is maintained in a session-based
consistency aspect. Second, a cache manager called
ARMIMan (ActiveRMI Manager) is designed to
maintain the cache. Finally, ARMIMan executes a

consistency protocol to exchange consistency control
information.

5.1 Sharing Considerations
Java provides four access controls public, private,

protected, and friendly for classes, variables, and
methods. A Java method can be further defined as
transient or persistent according to whether the data of
the method are read-only or writable. When clients
want to access a public and persistent ActiveRMI
method, data inconsistency may occur. ARMIMan
maintains the data consistency of the cached ActiveRMI
code depending on the sharing attributes of the
methods.

Because only the object provider knows whether a
method is transient or persistent, it needs to specify the
access attribute of each method. When the remote
server publishes an RMI service, the remoter server
registers the access attribute of each method along with
the remote RMI code. When an active router downloads
an ActiveRMI code, the ARMIMan records the access
attributes of the methods in a cache table to maintain
the consistency of the cached ActiveRMI code.

5.2 The Cache Table
The ARMIMan at an active router manages the

cached ActiveRMI code by recording the related
information of the cached ActiveRMI code in a hash
table and maintaining the state transfer of the methods.
The following considerations are addressed.

1. ARMIMan records the client list and the method
list to show a client invokes a method. When the data of
the cached ActiveRMI code needs to be updated,
ARMIMan informs the clients or active routers who
invoke the same method by checking the client list.

2. Because of the finite resource or space on an
active router, ARMIMan evicts the cached ActiveRMI
code by the LRU replacement algorithm with double
linked list data structure. The longest last access time
(LAT) of the cached ActiveRMI is evicted first.
Therefore, a LAT field and the previous and the next
pointer of the cached ActiveRMI code are recorded.

3. Furthermore, states of the invoked methods are
recorded. The state is either one of the following:
isValid, Exculsive, and isWritable. Whether a method of
the cached ActiveRMI code is transient or persistent is
also recorded in the isWritable field. When a client
wants to invoke a transient method of the cached
ActiveRMI code, ARMIMan checks the isValid field.
On the other hand, the Exculsive field needs to be true
when a client wants to modify a persistent method.

5.3 Data Consistency Protocol
In ActiveRMI, the consistency protocol allows either

a single writer or multiple readers at a given time. The
consistency protocol is designed with the consideration
of reducing the network traffic between the clients and
the remote server. Therefore, five approaches are

adopted to maintain the data consistency of the cached
RMI code in ActiveRMI, including callback promise [7],
delayed-write [8], session guarantee [9], write-
invalidate [10] and write-shared [8]. They are
elaborated in the following paragraph.

1. When an active router wants to cache ActiveRMI
code, it must get a callback token, which has a valid or
cancelled state from the remote server. When a client
wants to modify a persistent method of the cached
ActiveRMI code, this event invokes the remote server
to invalidate other copies by sending a callback token
with cancelled state. Only the client who caches the
ActiveRMI code in exclusive mode, called owner, can
modify the data of the cached ActiveRMI code, while
other copies are in read-only mode.

2. The update of the invoked method is stored at the
local buffer of an active router temporarily until the
session is closed, rather than being sent to the remote
server immediately.

3. To avoid causing unnecessary network traffic, the
remote server does not update the data to other cached
ActiveRMI code until the other client wants to read or
modify the data. When a client experiences a read miss
or write miss on the data of the cached ActiveRMI code,
a request is sent to the previous active router or the
remote server to get the updated data.

4. The remote server updates the cached ActiveRMI
code only by transmitting the changes of the method or
the cached ActiveRMI code rather than the whole
method or ActiveRMI code.

In ActiveRMI, the forgoing approaches are
integrated to execute the consistency protocol. Three
cases are maintained in the ActiveRMI consistency
protocol. A paradigm running the consistency protocol
is depicted in Figure 4. In the paradigm, the same
ActiveRMI code is cached at the two active routers.
These active routers maintain the consistency by
recording the object states of the cached ActiveRMI
code, including V, isValid and E, isExclusive. A client
invokes the cached ActiveRMI code in exclusive mode
is called owner. The ARMIMan executes the
consistency action depending on whether the invoked
method of the cached ActiveRMI code read or write the
object state.

Figure 4: An example of running the ActiveRMI data
consistency protocol.

In the read case, a paradigm is illustrated in Figure 5.
When client C1 wants to read the object state of the
cached ActiveRMI code and experiences a read-miss,
the ARMIMan of AR1 needs to communicate with the
server. One of the following two cases will be occurred.
One is that no other client invokes the ActiveRMI code
in exclusive mode, and then AR1 fetches the valid data
on the way to the server. If an intermediate active router
AR3 caches the ActiveRMI code with the valid data, the
valid data will be sent back to AR1 and the method of
AR1 is changed to be valid, as is showed in Figure 5.
Otherwise, if no one owns the valid data except the
server, the server updates the valid data along the way
between the active router and the server. The other case
is that while C1 wants to read the object state of the
ActiveRMI code, C3 accesses it in exclusive mode, as
depicted in Figure 6. The request of C1 then is sent to
the server to ask to downgrade the other copies. The
server is responsible to downgrade the copy of AR3 to
read-only mode and ask AR3 to send the valid data to
AR1.

Figure 5: A read-read case of the ActiveRMI data
consistency protocol.

Figure 6: A read-write case of the ActiveRMI data
consistency protocol.

In the write case, when C1 attempts to perform a
write operation on the object state of the cached
ActiveRMI code, the object state needs to be set in
exclusive mode. Therefore, the ARMIMan of AR1 has
to communicate with the server that coordinates the

cached ActiveRMI code. Two possible cases need to be
handled by the remote server. In one case, taking Figure
7 as an example, if the object state of the cached
ActiveRMI code is in exclusive mode at another active
router, AR3, the server downgrades the copy of AR3
and asks AR3 to send the latest data to AR1. In the
other case, if the object state of the cached ActiveRMI
code is in shared mode that many active routers, AR2
and AR3, cache the ActiveRMI code with valid data,
then the server invalidates all of them and asks AR3 to
send the valid data to AR1, as depicted in Figure 8.

Figure 7: A write-write case of the ActiveRMI data
consistency protocol.

Figure 8: A write-read case of the ActiveRMI data
consistency protocol.

6. Conclusions
To avoid extra network traffic for maintaining the

code and data consistency of the cached ActiveRMI
code degrades the ActiveRMI performance instead, in
this paper the design of the code and data consistency
maintenance in ActiveRMI is presented. Because
ActiveRMI provides a hierarchical caching scheme and
several consistency strategies are employed to maintain
the code and data consistency of the cached ActiveRMI
code, the amount of long-distance network
communication is reduced. In the future, performance
evaluations and more comprehensive experiments of
ActiveRMI will be conducted for further studies.
Improvements on cache consistency protocol are also in
our future working schedule.

References
[1] A. D. Birrell and B. J. Nelson. “Implementing

Remote Procedure Calls.” ACM Transactions on
Computer Systems, 2(1): 39-59, February 1984.

[2] C.-Z. Yang and C.-W. Chen. “Issues on the RPC
Paradigms in Active Networks.” In Proceedings of
the Active Networking Workshop, pp. 100-105,
September 2002.

[3] P. Tullmann, M. Hibler, and J. Lepreau. “Janos: A
Java-Oriented OS for Active Network Nodes.”
IEEE Journal on Selected Areas in
Communications, 19(3): 117-131, March 2001.

[4] M.-C. Wueng. “Design of Code Caches in Active
RMI.” Master Thesis, Yuan Ze University, July
2003.

[5] V. Krishnaswamy, I. Ganev, J. Dharap, and M.
Ahamad. “Distributed Object Implementations for
Interactive Applications.” In Proceedings of
IFIP/ACM International Conference on Distributed
System Platforms, pp. 45-70, 2000.

[6] M. Ahamad and R. Kordale. “Scalable Consistency
Protocol for Distributed Services.” In Transactions
on Parallel and Distributed System, 10(9): 888-903,
1999.

[7] J. Eberhard and A. R. Tripathi. “Efficient Object
Caching for Distributed Java RMI Applicaitons.” In
Proceedings of IFIP/ACM International Conference
on Distributed Systems Platforms, pp. 15-35, 2001.

[8] J. Howard, M. Kazar, S. Menees, D. Nichols, M.
Satyanarayanan, R. Sidebotham, and M. West.
“Scale and Performance in a Distributed File
System.” ACM Transactions on Computer Systems,
6(1): 134-154, 1988.

[9] J. Carter, J. Bennett, and W. Zwaenepoel.
“Techniques for Reducing Consistency-Related
Communication in Distributed Shared-Memory
Systems.” ACM Transactions on Computer Systems,
13(3): 205-243, 1995.

[10] D. B. Terry, A. J. Demers, K. Petersen, M. J.
Spreitzer, M. M. Theimer, and B. B. Welch.
“Session Guarantees for Weakly Consistent
Replicated Data.” In Proceedings of the 3rd IEEE
Symposium on Parallel and Distributed
Information System, pp. 140-150, 1994.

[11] P. Stenstrom. “A Survey of Cache Coherence
Schemes for Multiprocessors.” IEEE Computer,
23(6): 12-24, 1990.

	Abstract
	References

