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Abstract 
In the traditional end-to-end network model, the 

intermediate routers are only responsible for storing and 
forwarding the packets from one endpoint to another 
endpoint. In such a model, the Remote Procedure Call 
(RPC) methodology was proposed to provide a concise 
and transparent programming interface. As the 
following development, an RPC-like mechanism RMI 
(Remote Method Invocation) has been incorporated in 
Java. However, in a large-scale environment the 
RPC/RMI paradigm faces many limitations in system 
scalability. In our previous research, we have proposed 
a new programming paradigm called ActiveRMI 
(Active Remote Method Invocation) to improve the 
scalability problem of the traditional RMI mechanism 
by using active network technology. ActiveRMI 
provides a hierarchical code-caching scheme in which 
remote ActiveRMI code is cached and built up at 
proximate active routers to process RMI requests. 
Therefore, the server load is shared and the amount of 
network traffic is reduced. However, consistency 
problem arises if multiple copies of ActiveRMI code 
exist at different active routers. In this paper, our 
approaches for cache consistency control in ActiveRMI 
are elaborated. More comprehensive experiments for 
different distributed applications are on our schedule to 
understand the potential bottleneck problems in the 
current design. 

Keywords: ActiveRMI, Java RMI, Active networks, 
Code caching technology, Consistency protocol. 

1. Introduction 
In traditional network architecture, the intermediate 

routers are only responsible for storing and forwarding 
the packets from one endpoint to another endpoint. This 
presents an end-to-end network model in which the 
routers perform computations only for packet 
transmission. In such a scenario, the client-server 
computation model is widely employed in distributed 
application design and socket programming is the most 
common programming methodology. Although 
applications designed in socket programming are 
efficient, application development is tedious because 
programmers need to control every transmission detail. 
Therefore, in 1984 the Remote Procedure Call (RPC) 

methodology was proposed to provide a concise and 
transparent programming interface [1]. 

However, in a large-scale environment the RPC 
paradigm faces many limitations in system scalability. 
When a large number of client requests burst to an RPC 
server, the RPC service performance will be degraded 
due to two following situations. One is that the 
workload of the server is highly increased, and the 
server thus becomes the system bottleneck. Another is 
that the amount of network traffic to the server is also 
highly boosted. Therefore, not only the clients wait for 
the responses for a long time, but also the performance 
of all network services of the same area is influenced. 
These two situations all hurt the system scalability. In 
addition to the scalability problem, RPC services are 
fragile when server or network failures occur. Although 
introducing a multi-tier design can relieve these 
problematic situations, application development is thus 
complicated. The clients need to be aware of these 
explicitly added middle tiers. As discussed in [2], active 
networks provide a new network infrastructure that can 
be used to leverage the RMI performance 
improvements.  

In our previous research [4], an active-network- 
based RMI mechanism called ActiveRMI (Active 
Remote Method Invocation) has been proposed. As 
depicted in Figure 1, RMI code can be cached at 
intermediate active routers in ActiveRMI so that RMI 
requests can be intercepted and served at the proximate 
active routers. Three advantages are thus achieved. First, 
the server bottleneck problem is alleviated because the 
server workload is shared with intermediate active 
routers. Second, the amount of the network traffic to the 
RMI server is reduced since the packet transmission is 
localized between the clients and the nearby active 
routers. Third, the user response time is thus shortened. 
Therefore, the scalability and RMI performance in 
ActiveRMI is further improved. 

Although caching ActiveRMI code at proximate 
active routers improves the system scalability and RMI 
performance, the extra overhead for maintaining the 
consistency of the cached ActiveRMI code may not be 
ignorable and thus degrade ActiveRMI performance 
instead. This overhead is incurred because the code or 
data of the cached ActiveRMI code may be inconsistent  



 
Figure 1: Architecture overview of ActiveRMI. 

when the ActiveRMI code is modified at the remote 
RMI server without updating the cached code. Besides, 
clients may modify the persistent data at active routers 
without updating the original copy at the RMI server. 
Data inconsistency is thus introduced. Both situations 
show that consistency control is not a trivial issue in the 
design of ActiveRMI. 

In this paper, four approaches incorporated in 
ActiveRMI consistency control are elaborated. They 
include callback promise, delayed-write, session 
guarantee, and write-invalidate. Furthermore, because 
the code can be cached at intermediate active routers, 
ActiveRMI employs a hierarchical distributed caching 
scheme to avoid unnecessary long-distance capsule 
transmission. If an ActiveRMI service is frequently 
invoked, its code is cached at multiple intermediate 
active routers along the network path to the RMI server. 
The cached ActiveRMI services and their valid data can 
be thus shared with other proximal clients for the future 
requests. 

The remainder of the paper is organized as follows. 
Section 2 briefly reviews previous studies about the 
consistency maintenance of object caching. Section 3 
provides a brief background description of ActiveRMI. 
The execution of a cached ActiveRMI application is 
mainly explained. Then the design of the code and data 
consistency maintenance in ActiveRMI is separately 
elaborated in Section 4 and Section 5. Finally, Section 6 
concludes the paper. 
 
2. Related Work 

Caching technology has been proven to be an 
effective way in improving the system scalability. Many 
research efforts have been investigated on caching 
technology to enhance RMI performance of distributed 
object systems [5,6,7].  

In 2000, Krishnaswamy et al. have adopted caching 
technology to provide the immediate requirements for 
running interactive distributed applications [5]. 
Everhard and Tripathi have presented a middleware so 
that caching technology can be insensibly added to 
existing RMI applications [6]. Furthermore, to reduce 
the overhead of maintaining the consistency of the 
cached copies and provide a scalable consistency 
protocol, Ahamad and Kordale [7] have proposed a 
local consistency (LC) mechanism by allowing users to 
control over the updates of the cached objects. However, 

these approaches do not consider incorporating the 
emerging active network technology. Therefore, the 
caching infrastructure can only be a simple two-level 
structure.  

In ActiveRMI, a hierarchical caching scheme is 
provided so that the network traffic for maintaining the 
consistency can be reduced. Valid code or data can be 
fetched by traveling up the hierarchy rather than only 
remote servers. Furthermore, client numbers that remote 
servers need to handle are reduced because server 
workload is shared with intermediate active routers. 
Therefore, the overall ActiveRMI performance can be 
improved efficiently. 

3. ActiveRMI Background 
ActiveRMI was first proposed in [4]. The traditional 

Java RMI mechanism is improved by using active 
networks technology. This section provides a brief 
introduction to ActiveRMI as the background for 
further explanation on our design of consistency 
control. 

3.1 Pre-processing ActiveRMI Applications 
Because of the programmable characteristic of active 

networks, applications can be deployed over the 
network by transmitting active packets called capsules. 
The code is carried in capsules and injected into active 
routers. To deploy ActiveRMI services, capsule-related 
code must be automatically generated in ActiveRMI 
applications  

As depicted in Figure 2, an ActiveRMI application 
contains several Java parts: an interface, a client stub, 
and a server skeleton. The application code is then 
parsed and transferred to add ANTS-specific code. 
MIT’s ANTS is taken as the active network basis 
because of its versatility. After the pre-processing, 
ActiveRMI services can be deployed with capsules, and 
cached at ActiveRMI-enabled routers. When an 
ActiveRMI service is cached, ANTS can initiate it to 
provide the RMI service at the active router. 

 
Figure 2: The cached ActiveRMI code. 



Figure 3: The flowchart of the ActiveRMI invocation protocol.                     

3.2 ActiveRMI Invocation 
In ActiveRMI, an invocation protocol is designed to 

initiate ActiveRMI services at proximate active routers. 
Figure 3 describes the flowchart of the ActiveRMI 
invocation protocol. When an RMI request is 
intercepted by a proximate active router, the active 
router will check whether the required code is cached. If 
the required code has been cached and is still valid, it 
will be activated to process RMI request immediately. 
Otherwise, the active router sends a Lookup message 
to a remote registry to find the required RMI service. 
The required RMI service can be downloaded either 
from the original RMI server or an active router that is 
near the RMI server and has a valid cache copy. After 
the ActiveRMI code is downloaded, ANTS then creates 
the execution environment and initiates the service. 
Finally, the response will be sent back to the client and 
the ActiveRMI service is stopped.  

4. Code Consistency Maintenance 
Because an ActiveRMI service can be cached at 

several intermediate active routers, code inconsistency 
may occurs if the ActiveRMI code is modified at the 
server but not updated at the routers. To let the cached 
ActiveRMI code be up-to-date without incurring a large 
amount of overheads, an effective updating is needed.  

In our design of code consistency maintenance, two 
approaches are adopted for performance consideration. 
The first approach is to minimize the amount of the 
network traffic incurred in maintaining the code 
consistency. Only the difference of the updated 
ActiveRMI code is transported. The second approach is 
for fault-tolerance consideration. A TTL (Time-To-Live) 
scheme is used to assign a lifetime to the cached 
ActiveRMI code to avoid invocating obsolete RMI 
services when network partitions occur.  

When the lifetime of a cached ActiveRMI service is 
expired, the active router will query the RMI server 
whether the ActiveRMI code is updated during next 
invocation. If the code is modified, the fresh ActiveRMI 
code is downloaded to the active router. Otherwise, the 
TTL of the cached ActiveRMI code is reset. 

5. Data Consistency Maintenance 
In addition to code consistency maintenance, data 

consistency maintenance cannot be ignored in 
ActiveRMI design. Three design considerations are 
addressed. First, the sharing state of a cached 
ActiveRMI code is maintained in a session-based 
consistency aspect. Second, a cache manager called 
ARMIMan (ActiveRMI Manager) is designed to 
maintain the cache. Finally, ARMIMan executes a 



consistency protocol to exchange consistency control 
information. 

5.1 Sharing Considerations 
Java provides four access controls public, private, 

protected, and friendly for classes, variables, and 
methods. A Java method can be further defined as 
transient or persistent according to whether the data of 
the method are read-only or writable. When clients 
want to access a public and persistent ActiveRMI 
method, data inconsistency may occur. ARMIMan 
maintains the data consistency of the cached ActiveRMI 
code depending on the sharing attributes of the 
methods.   

Because only the object provider knows whether a 
method is transient or persistent, it needs to specify the 
access attribute of each method. When the remote 
server publishes an RMI service, the remoter server 
registers the access attribute of each method along with 
the remote RMI code. When an active router downloads 
an ActiveRMI code, the ARMIMan records the access 
attributes of the methods in a cache table to maintain 
the consistency of the cached ActiveRMI code. 

5.2 The Cache Table   
The ARMIMan at an active router manages the 

cached ActiveRMI code by recording the related 
information of the cached ActiveRMI code in a hash 
table and maintaining the state transfer of the methods. 
The following considerations are addressed.  

1. ARMIMan records the client list and the method 
list to show a client invokes a method. When the data of 
the cached ActiveRMI code needs to be updated, 
ARMIMan informs the clients or active routers who 
invoke the same method by checking the client list. 

2. Because of the finite resource or space on an 
active router, ARMIMan evicts the cached ActiveRMI 
code by the LRU replacement algorithm with double 
linked list data structure. The longest last access time 
(LAT) of the cached ActiveRMI is evicted first. 
Therefore, a LAT field and the previous and the next 
pointer of the cached ActiveRMI code are recorded. 

3. Furthermore, states of the invoked methods are 
recorded. The state is either one of the following: 
isValid, Exculsive, and isWritable. Whether a method of 
the cached ActiveRMI code is transient or persistent is 
also recorded in the isWritable field. When a client 
wants to invoke a transient method of the cached 
ActiveRMI code, ARMIMan checks the isValid field. 
On the other hand, the Exculsive field needs to be true 
when a client wants to modify a persistent method.  

5.3 Data Consistency Protocol  
In ActiveRMI, the consistency protocol allows either 

a single writer or multiple readers at a given time. The 
consistency protocol is designed with the consideration 
of reducing the network traffic between the clients and 
the remote server. Therefore, five approaches are 

adopted to maintain the data consistency of the cached 
RMI code in ActiveRMI, including callback promise [7], 
delayed-write [8], session guarantee [9], write- 
invalidate [10] and write-shared [8]. They are 
elaborated in the following paragraph. 

1. When an active router wants to cache ActiveRMI 
code, it must get a callback token, which has a valid or 
cancelled state from the remote server. When a client 
wants to modify a persistent method of the cached 
ActiveRMI code, this event invokes the remote server 
to invalidate other copies by sending a callback token 
with cancelled state. Only the client who caches the 
ActiveRMI code in exclusive mode, called owner, can 
modify the data of the cached ActiveRMI code, while 
other copies are in read-only mode.  

2. The update of the invoked method is stored at the 
local buffer of an active router temporarily until the 
session is closed, rather than being sent to the remote 
server immediately. 

3. To avoid causing unnecessary network traffic, the 
remote server does not update the data to other cached 
ActiveRMI code until the other client wants to read or 
modify the data. When a client experiences a read miss 
or write miss on the data of the cached ActiveRMI code, 
a request is sent to the previous active router or the 
remote server to get the updated data. 

4. The remote server updates the cached ActiveRMI 
code only by transmitting the changes of the method or 
the cached ActiveRMI code rather than the whole 
method or ActiveRMI code.  

In ActiveRMI, the forgoing approaches are 
integrated to execute the consistency protocol. Three 
cases are maintained in the ActiveRMI consistency 
protocol. A paradigm running the consistency protocol 
is depicted in Figure 4. In the paradigm, the same 
ActiveRMI code is cached at the two active routers. 
These active routers maintain the consistency by 
recording the object states of the cached ActiveRMI 
code, including V, isValid and E, isExclusive. A client 
invokes the cached ActiveRMI code in exclusive mode 
is called owner. The ARMIMan executes the 
consistency action depending on whether the invoked 
method of the cached ActiveRMI code read or write the 
object state. 

 
Figure 4: An example of running the ActiveRMI data 
consistency protocol. 



In the read case, a paradigm is illustrated in Figure 5. 
When client C1 wants to read the object state of the 
cached ActiveRMI code and experiences a read-miss, 
the ARMIMan of AR1 needs to communicate with the 
server. One of the following two cases will be occurred. 
One is that no other client invokes the ActiveRMI code 
in exclusive mode, and then AR1 fetches the valid data 
on the way to the server. If an intermediate active router 
AR3 caches the ActiveRMI code with the valid data, the 
valid data will be sent back to AR1 and the method of 
AR1 is changed to be valid, as is showed in Figure 5. 
Otherwise, if no one owns the valid data except the 
server, the server updates the valid data along the way 
between the active router and the server. The other case 
is that while C1 wants to read the object state of the 
ActiveRMI code, C3 accesses it in exclusive mode, as 
depicted in Figure 6. The request of C1 then is sent to 
the server to ask to downgrade the other copies. The 
server is responsible to downgrade the copy of AR3 to 
read-only mode and ask AR3 to send the valid data to 
AR1. 

 
Figure 5: A read-read case of the ActiveRMI data 
consistency protocol. 

 
Figure 6: A read-write case of the ActiveRMI data 
consistency protocol. 

In the write case, when C1 attempts to perform a 
write operation on the object state of the cached 
ActiveRMI code, the object state needs to be set in 
exclusive mode. Therefore, the ARMIMan of AR1 has 
to communicate with the server that coordinates the 

cached ActiveRMI code. Two possible cases need to be 
handled by the remote server. In one case, taking Figure 
7 as an example, if the object state of the cached 
ActiveRMI code is in exclusive mode at another active 
router, AR3, the server downgrades the copy of AR3 
and asks AR3 to send the latest data to AR1. In the 
other case, if the object state of the cached ActiveRMI 
code is in shared mode that many active routers, AR2 
and AR3, cache the ActiveRMI code with valid data, 
then the server invalidates all of them and asks AR3 to 
send the valid data to AR1, as depicted in Figure 8.  

 
Figure 7: A write-write case of the ActiveRMI data 
consistency protocol. 

 
Figure 8: A write-read case of the ActiveRMI data 
consistency protocol. 

6. Conclusions  
To avoid extra network traffic for maintaining the 

code and data consistency of the cached ActiveRMI 
code degrades the ActiveRMI performance instead, in 
this paper the design of the code and data consistency 
maintenance in ActiveRMI is presented. Because 
ActiveRMI provides a hierarchical caching scheme and 
several consistency strategies are employed to maintain 
the code and data consistency of the cached ActiveRMI 
code, the amount of long-distance network 
communication is reduced. In the future, performance 
evaluations and more comprehensive experiments of 
ActiveRMI will be conducted for further studies. 
Improvements on cache consistency protocol are also in 
our future working schedule. 
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