
VISE 視覺化介面的查詢處理核心設計
Design of the Query-Processing Kernel in VISE Visualization Interface

楊正仁 楊鎮州 陳英祥

元智大學資訊工程學系
Cheng-Zen Yang, Chen-Cho Yang, and Ing-Xiang Chen

Department of Computer Science and Engineering
Yuan Ze University

Email: {czyang,steven,sean}@syslab.cse.yzu.edu.tw

Abstract

To help users find information of interest from
large amount of Web pages, we have proposed a
visualizing interface called VISE for amending the
shortcomings existed in the list-based interface of
most common Web search engine. From previous
study, VISE is good at presenting the search results
in a graphical interface and showing the hyperlink
relationships between the result entries. However,
VISE suffers from its lengthy processing time. In this
paper, we propose a TTL-based caching scheme to
improve the performance of query processing. In
addition to the TTL caching scheme, the VISE
query-processing kernel is multi-threaded for further
performance improvement. To evaluate the
performance improvement of the caching scheme, we
have conducted several experiments. The
experimental results show that the query processing
time is indeed improved after the caching scheme is
incorporated. Although there may be stale data, the
stale data rate is kept under 5%. Although the
experiments are preliminary, we believe that the
caching design improve the practicability of VISE to
help users efficiently find the important information.

Keywords: visual interface, TTL-based caching,
query processing, multi-threading, Web search
engines.

1. Introduction

Because of the explosively growing amount of
information on the World Wide Web, finding
information of the most interest becomes a difficult
problem. To solve the problem, Web search engines
provide services in helping people find and retrieve
information of interest from the huge amount of Web
pages. Without the assistance of search engines, the
results found by manually tracing the hyperlinks may
be limited, and the finding process is
time-consuming.

However, most popular Web search engines such
as Google, MSN, and Yahoo provide their search
results in a list-based interface where the title,
summarized description, and URL of each entry are

listed in lines. Two main drawbacks exist in the
list-based representation. First, a list-based
representation can provide limited information for
each result entry due to the limitation of text
representation. Users need to spend much time to
navigate all possibly related items. However, since
the provided information is limited, users may give
up their searching after they browse top ten to twenty
pages [1]. Second, it is hard to show relationships
between the search results in a list-based interface.
For example, displaying the linkage relationships are
not considered in the list-based representation.
Whether two entries are on the same Web site can be
also hardly shown in the list-based representation.

On account of the shortcomings of the list-based
interface, research efforts have been initiated to
improve the visual representation of the search
results. The research systems include WebQuery [2],
HyperSpace [3], CardVis [4], and INSYDER [5]. In
our previous study, we have also proposed a
visualizing interface called VISE (Visual Interface
for Search Engines) [6] specifically to visualize the
search results of Web search engines. VISE is
designed to improve the drawback of the list-based
interface by visualizing more information to help
users sift through the ranked pages with link
relevance.

Figure 1 shows the system architecture of VISE.
The query formulator processes the query terms in a
legal form and sends them to the back-end search
engine. After the search engine returns query results,
the crawling analyzer analyzes the results, retrieves
the content of each result entry, and yields the
hyperlink structure of the results. Then, the
visualization engine draws the graph of the search
results according to the hyperlink structure. The
overall relevance relationships are thus visualized in
the graphical interface. The search entries are
represented with different nodes, and linkage
relationships are demonstrated with connected lines.

However, the VISE prototype has a severe
performance problem because the crawling analyzer
spends much time in retrieving remote Web pages on
the fly. Although this guarantees that the
visualization is up-to-date, the lengthy retrieval

process makes VISE impractical to provide good
service. For example, in some worst cases VISE may
spend over one hour in retrieving all Web pages
according to the results of a general query.

To improve the practicability of VISE in query
processing, two approaches are incorporated in the
VISE query-processing kernel. First, a TTL
(Time-To-Live)-based caching scheme is designed to
cache previously retrieved query pages. Second, the
query-processing kernel is multi-threaded to
parallelize the query processing. Caching mechanism
has been proved to be a very effective mechanism in
system performance improvement. Specifically, Web
caching plays an important role in reducing server
load, reducing network traffic, and decreasing
service response time. On the other hand, the
parallelized query processing highly reduces the
response time. Although multi-threading incurs
overheads in thread generation, the overheads can be
neglected if compared with retrieval network latency.

In this paper, we present the TTL-based cache
design of the VISE query-processing kernel and
other improvements in retrieval process. In the
caching scheme, consistency maintenance is an
important issue to avoid accessing stale information.
The consistency maintenance mechanism is therefore
discussed in the cache design. A replacement policy
is also described to show how to maintain an enough
cache space. Besides, the improvements on the
query-processing procedure of retrieving remote
objects are also elaborated.

We have conducted several experiments to
measure the performance improvement in VISE and
the effectiveness of the cache design. Although the
experimental results are still preliminary, they show
the great improvement on the practicability of VISE.

 The rest of the paper is organized as follows.
Section 2 gives an overview of previous consistency
algorithms and the studies about lifespan of Web
pages. Section 3 elaborates the cache design of VISE
and other improvements. Section 4 describes our

experimental results and summarizes the discussion.
Section 5 concludes the paper.

2. Consistency and Lifespan Considerations

 Caching mechanism has been proved to be a
very effective mechanism in system performance
improvement to reduce server load, network traffic,
and thereafter the service response time. Two
important issues need to be discussed in a cache
design. The first issue is to maintain the consistency
between the cache and the remote source. The second
is to perform cache replacement for keeping enough
cache space.

According to the categorization of consistency
algorithms classified by Cao and Ozsu [8], the ways
to maintain cache consistency fall into three
categories: the client validation approach, the server
invalidation approach, and client-server (C/S)
interaction approach. In the client validation
approach, the cache manager at the client side is
responsible for maintaining the consistency. With
server invalidation, cached objects are always
assumed to be up-to-date. Whenever an object is
changed on the server, the server notifies all the
client caches to maintain the consistency. In the C/S
interaction approach, the client and the server work
interactively to maintain the cache consistency.

 Considering the strictness of the consistency,
each approach can be further classified into two
sub-categories: strong cache consistency and weak
cache consistency. They give a more detailed
classification table of the cache consistency
algorithms here shown in Table 1 [8]. In the strong
consistency model, the consistency between cached
copies and original ones is always maintained. In the
weak consistency model, the cached copies may be
stale for a while, and then the consistency is
maintained. The TTL (Time-To-Live)-based
approach is a client-validation, weak consistency
approach, which is suitable for VISE. This is because
the back-end Web servers are not aware of the cache
in VISE. The Web servers cannot actively maintain
the consistency. In addition, maintaining strong
consistency from VISE will incur many validation
messages and thus suffer from heavy network traffic.

However, the lifespan of the cached objects
should be considered carefully in the TTL-based

Figure 1: The visualized interface of VISE.

Table 1: The classification of cache consistency
algorithms by Cao and Ozsu [8]. Our TTL-based
cache design is in the client validation approach
with weak consistency maintenance.

 Client Validation Serer
Invalidation

C/S
Interaction

Strong Polling-every-time Invalidation Lease
Weak TTL and PCV PSI N/A

approach to avoid keeping stale copies too long. In
previous studies [9, 10], the lifetime of different
domain of Web pages is analyzed according to their
network domains. The analysis from [10] shows that
about 50% of the .com Web pages and about 90% of
the .edu Web pages remains unchanged on the 10th
day. The lifetime of about 50% of the .edu Web
pages can be even lasted for almost 4 months. The
study in [9] has similar results. We will accordingly
decide the TTL parameters in our scheme.

 For keeping enough cache space, many
replacement polices have been discussed and
investigated in Web caching to improve the caching
performance [12,13,14,15,16]. According to
categorization by Aggarwal et al. [16], replacement
policies can be categorized as: direct extensions of
traditional policies, key-based policies, and
function-based replacement policies. From these
studies, LRU shows its averagely prominent
performance in replacement control.

3. Query-Processing Kernel Improvements

To improve the retrieval performance of VISE,
the query-processing kernel is enhanced by
incorporating a Web page cache and a multi-threaded
retrieval crawler. The cache stores the previously
retrieved and analyzed Web pages. It also keeps other
information such as the hyperlink relationship. The
design details are described in the following.

3.1 Cache Design

Figure 2 depicts the architecture of VISE
augmented with the Web page cache. After the
crawling analyzer receives the query results from the
search engine, it analyzes the cached Web pages and
synthesizes the hyperlink structures from the cache
instead of immediately retrieving them from remote
Web servers. If the analyzed Web pages are invalid
or the pages are not in the cache, the cache manager

starts the crawler to fetch these pages. Due to the
complicated network conditions, the retrieving time
may be lengthy and block the future visualization
process. Therefore, to decrease the probably lengthy
processing, several approaches are adopted. First, the
retrieval process is multithreaded so the retrieval is
parallelized. Second, the waiting time is bounded. If
the retrieval time exceeds the time-bound, VISE will
try to use the pages cached at the back-end search
engine. However, there are only some search engines
providing such functionality. In this case, the locally
cached pages will be still used even if they are stale.
In the worst case, VISE may not find any Web page
for the URL. Then this entry will be discarded.

The cache also maintains the correspondent
hyperlink reference relationships. If the cached Web
pages are valid, the visualiation engine will directly
process these hyperlink struction. The visualization
performance is therefore imporved.

3.2 The Crawling Procedure

In the original VISE, the crawling analyzer is
designed to retrieve and analyze the Web pages on
the fly. However, this real-time retrieval incurs a
severe performance problem. With the incorporation
of the Web page cache, the query-processing
bottleneck is highly relieved. Figure 3 depicts the
complete flowchart of the improved crawling
procedure. The crawling analyzer will first interact
with the cache manager to check the valid cached
Web pages and reference relationships.

GUI

Crawling
AnalyzerVisualization

Engine

Query
Formulator

Search
Engine

Query
Terms

Users

Query

Query
Results

Hyperlink
Structures

Query ProcessingGraph Processing

Cache
Cache

Manager

GUI

Crawling
AnalyzerVisualization

Engine

Query
Formulator Engine

Query
Terms

Users

Query

Query
Results

Hyperlink
Structures

Query ProcessingGraph Processing

Cache
Cache

Manager

Pages

Web
Sites

Figure 2: The operation process of VISE
augmented with the Web page cache.

Ask the cache manager
for a data entry.

Is the entry in
the cache?

Get the page content
from the Web server. Is the entry valid?

Is the server
time-out?

Get a copy from the
search engine.

Send the data to the
crawling analyzer.

Store the data into
the cache.

YesNo

No Yes

Yes

No

Is there a copy from
the search engine?

Is the old entry
in the cache?

Set the data as no
hyperlink information.

Yes No

Yes No

Figure 3: The flowchart of crawling procedure.

In the crawling procedure, only if the requested
entries are in the cache and valid, will they be used in
further visualization. Otherwise, the cache manager
will try to request the pages from the origin servers.
If the requests are not time-out, the requested pages
will be stored in the cache and then sent to the
crawling analyzer. If the requests are time-out as file
is not found (error message 404) or server does not
respond (error message 603), the cache manager will
try to request the cached data from the back-end
search engine and store the copies in the cache for
later hyperlink analysis. If no Web page is available
from the Web servers and search engines, the cache
manager will try to use the stale but available entries
from the cache. In the worst case, VISE cannot find
any page. In such a case, the result URLs are
discarded and will not be visualized in VISE.

3.2 Cache Consistency

Because Web content providers may arbitrarily
create/modify/remove the pages, cached entries are
probably thus become stale. To reduce the number of
the stale entries, the cache manager takes the
responsibility to maintain the consistency. As
previously mentioned, a client-validation and weak
consistency approach is used in our cache design.

To avoid a large number of network messages
for consistency maintenance, a Time-To-Live (TTL)
prediction approach is adopted in the consistency
maintenance protocol. From the studies [9, 10], Web
pages of different domains have different average
lifetimes. In Table 2, about 80% of the Web pages
would generally change in 3 to 27 days. Because the
VISE cache stores data entries from different
domains, which have different cache lifetimes, the
TTL mechanism will effectively reduce the number
of consistency maintenance messages if the TTL
parameters are carefully adjusted.

In HTTP protocol, the “expires” header field
ideally provides the expiration date of a Web page,
however, most Web pages do not provide such expiry
information [10]. To predict the expiration date of
Web pages without expiry information, an adaptive
TTL approach with the lower bound of lifetime in
different domains is adopted. The adaptive TTL is

calculated as (Now – Last-Modified) * M, where M is
an experience value determined heuristically. To
prevent frequent data consistency in a short period of
time, a threshold of TTL is set. If the TTL value of a
page is smaller than the average time of 80% of the
Web pages in that domain, it will be assigned to the
value of the average domain lifetime. For example,
when an estimate of adaptive TTL for a .com domain
is smaller than 3 days, the value of TTL will be
assigned to 3. The estimate of expiration date of a
Web page will be Now + Estimated TTL.

3.3 Replacement Policy

 In a cache system, when the space is too small
to store any new entries, the cache manager needs to
remove valueless entries until the cache space is
large enough to store new entries. Many replacement
polices have been discussed and investigated to
improve the caching performance [12,13,14,15,16].
Among these approaches, the Least-Recently-Used
(LRU) algorithm is simple but averagely very
effective. In LRU, the cache manager removes the
least recently accessed pages until there is sufficient
space for the new document [11]. Therefore, in the
VISE cache design, LRU is used for the page
replacement.

 The replacement also considers the staleness of
the cache entries. The stale entries will be first
selected to be replaced with LRU. If the cache space
is not large enough, the cache manager will select
valid entries to evict them according to the LRU
policy.

4. Performance Evaluation

 To evaluate the performance improvements, we
have conducted several evaluation experiments. In
the experiments, the performance of cache-improved
VISE is compared with the performance of the
original VISE. The experimental systems are
developed with JDK1.4.0 01 and executed on Red
Hat Linux 7.3. In the experiments, Google is used as
the back-end search engine in the VISE prototype.
The experimental cache size is 40GB.

The performance is measured by querying
different strings. In the first experiment, “data
mining” was queried to evaluate the effectiveness of
the caching scheme. In the second experiment,
“SARS” was queried to see the difference of
querying a hot term. In Table 3 and Table 4, both the
processing times of the first-time query and the
average of the following 10 times are listed. In these
experiments, the improvement of cache is very
obvious. In the third experiment, the performance of
cache consistency was evaluated for the same queries
performed in the first experiment. The experimental
results show the influence of the TTL scheme.

Table 2: The lifetime for different domains when
50% and 80% of pages do not change according to
[10].

Domain
Lifetime for
50% page
unchanged

Lifetime for
80% page
unchanged

.com 11 3

.net, .org 50 8

.edu 100 18

.gov 120 27

Finally, the hit rates of similar queries about the
NBA player “Shaquille O’ Neal” were measured to
show the performance when there were many cache
hits.

4.1 Experimental Results for Running Cache

In the experiments, we first measured the
performance of the original VISE by querying “data
mining” and retrieving 200 result entries. The
processing time was total 3950729 milliseconds. The
lengthy processing time is mainly because the
crawling process was sequential and the crawler
needed to wait for retrieval completion.

After VISE used the improved multi-threaded
query-processing kernel, the processing time was
reduced to total 274279 milliseconds for the
first-time query. In this case, the cache was empty.
We continued to query “data mining” for 10 times to
see the imporvement when some Web pages had
been cached. The processing time was further
reduced to total 8063 milliseconds, acceptable for
most users.

Table 3 and Table 4 further show the number of
cache misses and valid cache hits. In the case of
querying “data mining”, the average processing time
was 8063 milliseconds, and the total data size, which
contained 6335 hyperlinks, was 3765 KBs. In the
case of querying “SARS”, the average processing
time was 10047 milliseconds, and the total data size,
which contained 9979 hyperlinks, was 6419 KBs.
After the following 10 times of querying “data
mining” and “SARS”, there were respectively 183
and 189 data entries stored in the cache. In both cases,
there were separately 17 and 9 data misses, and the
average hit ratios were 91.5% and 94.5%.

The average misses of querying “data mining”
are 17. The misses were caused by the Web pages
that could not be retrieved and cached in the previous

querying. Besides, the search engine happened to
return different search results. This randomized
response also resulted in cache misses.

In querying “SARS”, 3 of 9 cache misses of
are because of removed pages, and 2 of 9 cache
misses are for invalid pages whose lifetime provided
by HTTP “expired” field was always too short to be
accessed. Others were because of the randomized
response. However, the visualization time was
comparable to the response time of Google in both
situations.

4.2 Evaluation of the Adaptive TTL Consistency
Algorithm

Because most Web sites do not provide the
information of expiration time, the lifetime is
predicted for each cache entry to avoid unnecessary
consistency checking. However, the TTL parameters
must be carefully adjusted. Otherwise, the predictive
lifetime of cache entries may mislead the crawling
analyzer to use the stale data.

In this experiment, the utilization rate of the
stale cache entry and the processing time were
calculated. The M value of the adaptive TTL
approach was assigned to 0.5, and the lower bounds
of lifetime for .com, .net, .edu, .gov, and other
domains were assigned to 3, 8, 18, 27, and 8 days,
respectively. The stale rates and the processing times
were recorded after 1, 3, and 7 days from the first
querying.

In Table 5, we can observe that there were
many cache hits and most of the cached entries were
not modified. After the first-time query, only three
entries were updated because the server updated the
expiry information in the first day. In the whole week,
the data were not updated frequently. However, the
stale data rate was 0 because the pages were indeed
not modified on the servers although the servers
reported the expiration.

Table 3: The processing time and cache usage for querying “data mining”.

 Processing Time
(ms) Cache Access Miss

Hit
Valid Invalid

The first-time query 274279 200 200 0 0
Avg. of the
following 10 times
of queries

8063 200 17 183 0

Table 4: The processing time and cache usage for querying “SARS”.

 Processing Time

(ms) Cache Access Miss
Hit

Valid Invalid
The first-time query 342441 200 200 0 0
Avg. of the
following 10 times
of queries

10047 200 9 189 2

Because “SARS” was the latest news issue
before the experiment and the pages were updated
frequently, the last-modified times for many pages
were close to the access times. In addition, its
predicted lifetime was short. Therefore, the overhead
of consistency check became much higher. As shown
in Table 6, the rates of stale entries used are 4.1%
and 5.1% in three days and seven days. According to
our observation, the Web pages about SARS
appeared mostly in the .gov and .org domains, and
the stale data were from these two domains. However,
for over half of Web servers VISE could not
determine from the IMS messages whether the pages
were modified, these Web pages were still retrieved
even if they were not modified. This injured the
system performance.

4.3 Evaluation of Similar Queries

In this experiment, there were four similar and
related terms that queried sequentially. It shows the
effect of processing time when the same cache
entries are referred by different querying terms. The
processing time and the cache usage are shown in
Table 7.

 When similar terms are queried, the search
engine will possibly return the same search results,
and the probability of hit entries in the cache will
become higher. Shaquille O’Neal is a famous
basketball NBA player, and Shaq is his nickname. In
Table 7, the hit ratio rises when similar terms are
queried sequentially, and the processing time

decreases accordingly.

4.4 Discussion

 Because of the parallelized retrieval procedure
and the incorporation of the reference cache, the
query processing time is highly improved. Compared
with the response time of querying Google, the
visualization time in VISE is very close with a 90%
cache hit ratio. As shown in the experimental results,
VISE is more practicable for visualizing the query
results.

Because stale data ratio of querying the
frequently updated topics such as “SARS” is about
5%, the information provided is mostly up-to-date.
When most similar entries are cached in the VISE
interface, it is believed that the performance
improvement makes the VISE interface more
convenient to network users.

5. Conclusions

 Because of the explosively growing amount of
information on the World Wide Web, finding
information for the user needs becomes a difficult
problem. Search engines can help users retrieve
information of interest from large amount of Web
pages, but the list-based interface shows only limited
information for search results.

In our previous research, VISE is proposed to
provide a visualization interface for displaying the
search results and the hyperlink reference

Table 5: The stale data rate for term “data mining”.

Days after the
first-time query

Processing
Time (ms)

Amount of
Cache Hit Valid Hit Update

(Server)
Update

(Predicted)
Number of Stale

Entry Used
1 9856 183 180 3 0 0
3 131458 184 160 16 8 0
7 116213 184 170 2 12 0

Table 6: The stale data rate for term “SARS”.

Days after the
first-time query

Processing
Time (ms)

Amount of
Cache Hit Valid Hit Update

(Server)
Update

(Predicted)
Number of Stale

Entry Used
1 12133 184 177 7 0 0
3 187413 187 122 16 49 5
7 95143 184 174 3 17 9

Table 7: The processing time and cache usage of four similar query terms.

Query Terms
Processing Time

(ms) Cache Access Miss
Hit

Valid Invalid
Shaquille O’Neal 264836 200 200 0 0
Shaq 251711 200 186 14 0
O’ Neal 181625 200 164 36 0
NAB O’Neal 92581 200 114 86 0

relationships between the result entries. However, the
original VISE design does not consider the
optimization of query processing and the poor
query-processing performance decreases its
practicability.

 In this paper, an improved query-processing
kernel is presented. It includes a TTL-based caching
scheme and a parallelized procedure. A reference
cache is designed to store the retrieved Web pages
and the hyperlink reference information. The
adaptive TTL approach is used for the cache
consistency algorithm, and different thresholds are
defined for the estimated TTLs of different network
domains.The query-processing time is highly
reduced and comparable to the response time of
normal Web search engines.

 To evaluate the performance improvement of
the caching scheme, we have conducted several
experiments. The experimental results show that the
query processing time is indeed improved after the
caching scheme is incorporated. As shown in the
experimental results, the TTL scheme effectively
keeps the sate data rate under 5%, and the cache hit
rate is kept around 90%.

Although the experiments are preliminary, we
believe that the caching design improves the
practicability of VISE to help users efficiently find
the important information. In the future, more
comprehensive experiments will be conducted to
study other performance bottlenecks. In addition,
prefetching is considered for further performance
improvement. More improvements on VISE
human-computer interaction are also in our future
plan.

References

[1] B. Amento, W. Hill, L. Terveen, D. Hix, and P.
Ju. “An Empirical Evaluation of User Interfaces
for Topic Management of Web Sites”. In
Proceedings of the CHI99 Conference on
Human Factors in Computing Systems,
pp.552–559, 1999.

[2] J. Carriere and R. Kazman. “Web Query:
Searching and Visualizing the Web through
Connectivity”. In Proceedings of the 6th
International World Wide Web Conference, pp.
701–711, April 1997.

[3] R. Beale, R. J. McNab, and I. H. Witten.
“Visualizing Sequences of Queries: A New Tool
for Information Retrieval”. In Proceedings of
1997 IEEE Conference on Information
Visualization, pp. 57–62, 1997.

[4] S. Mukherjea and Y. Hara. “Visualizing
World-Wide Web Search Engine Results”. In
Proceedings of the 1999 IEEE International

Conference on Information Visualization, pp.
400–405, July 1999.

[5] T. M. Mann. “Visualization of WWW-Search
Results”. In Proceedings of the International
Workshop on Web-Based Information
Visualization (WebVis’99), pp. 264–268, 1999.

[6] H.-C. Yang, M.-C. Tzeng, and C.-Z. Yang. “A
Web Interface for Visualizing Web Search
Engine Results”. In Proceedings of the 2001
National Computer Symposium, Workshop on
Internet and e-Commerce, Vol. I, pp. 151–159,
December 2001.

[7] J. Gwertzman and M. Seltzer, “World Wide
Web Cache Consistency”. In Proceedings of the
1996 USENIX Technical Conference, San Diego,
CA, pp. 141–152, 1996.

[8] L. Y. Cao and M. T. Özsu. “Evaluation of
Strong Consistency Web Caching Techniques”.
World Wide Web, Vol. 5, No. 2 pp. 95–123,
2002. Kluwer Academic Publishers.

[9] X. Chen and P. Mohapatra. “Lifetime Behavior
and its Impact on Web Caching”. In IEEE
Workshop on Internet Applications, 1999, pp.
54–61, 1999.

[10] J. Cho and H. Garcia-Molina. “The Evolution of
the Web and Implications for an Incremental
Crawler”. In Proceedings of the 26th
International Conference on Very Large Data
Bases, pp. 200–209, 2000.

[11] S. Glassman. “A Caching Relay for the World
Wide Web”. In Proceedings of the first
International Conference on the World Wide
Web, pp. 165–173, May 1994.

[12] M. Abrams, C. R. Standridge, G. Abdulla, S.
Williams, and E. A. Fox. “Caching Proxies:
Limitations and Potentials”. In Proceedings of
the 4th International WWW Conference, July
1995.

[13] S. Williams, M. Abrams, C. R. Standridge, G.
Abdulla, and E. A. Fox. “Removal Policies in
Network Caches for World-Wide Web
Documents”. In Proceedings of ACM
SIGCOMM 96, pp.293–305, Augast 1996.

[14] J. Dilley, and M. Arlitt, “Improving Proxy
Cache Performance-Analyzing Three Cache
Replacement Policies”. IEEE Internet
Computing, Vol. 3, No. 6, pp. 44–50,
November/December 1999.

[15]L. Rizzo and L. Vicisano, “Replacement Policies
for a Proxy Cache”. IEEE/ACM Transaction on
Networking, Vol. 8, No. 2, pp. 158–170, April
2000.

[16] C. Aggarwal, J. L. Wolf, and P. S. Yu, “Caching
on the World Wide Web”. IEEE Transaction on

Knowledge and Data Engineering, Vol. 11, No.1,
pp.94–107, January/Febrary 1999.

	Design of the Query-Processing Kernel in VISE Visualization Interface

