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Abstract— Java RMI provides a convenient way for program-
mers to design distributed applications in traditional networks.
However, this paradigm suffers from a centralize bottleneck
problem when many clients simultaneously send a large number
of requests to the server. ActiveRMI improves the Java RMI
performance by employing active networks technology with a
code caching scheme. With ActiveRMI, the server bottleneck
problem can be relieved, and the amount of network traffic
between clients and RMI servers can be reduced. Consequently,
the user response time is also highly reduced. However, the early
version of ActiveRMI lacks programming tools to help program-
mers write code. In this paper, we report a code generator
design called ARMIGen. Programmers can use ARMIGen to
conveniently develop ActiveRMI applications and deploy them
on active networks. We have evaluated the generation time and
the execution time of the generated ActiveRMI applications. The
preliminary experimental results show that the performance of
the generated code is comparable to the performance of the
hand-written code. The experiments also show that ARMIGen
is an effective and efficient programming tool.

Keywords—ActiveRMI, Code Generation, Java RMI, ANTS,
Active Networks.

I. I NTRODUCTION

Java RMI (Remote Method Invocation) provides a conve-
nient way for programmers to design distributed applications
because RMI encapsulates the transmission details. In RMI,
the client stub and the server skeleton provide programming
interfaces to the client and the RMI server. Therefore, the
programmers need not to handle packets sending/receiving in
detail. However, this programming paradigm suffers from a
centralized bottleneck problem when many clients simulta-
neously send a large number of requests to the server. The
server will deny or postpone further requests due to its heavy
workload. Furthermore, the traffic in the path between the
clients and the server is intensively congested. Therefore,
not only the response time is lengthy, but also the network
bandwidth along the path is completely consumed. In addition
to the scalability problem, the traditional RMI paradigm also
suffers from the single point failure problem when the server
crashes or the network is partitioned.

To alleviate these RMI shortcomings, as discussed in [1],
active networks [2, 3] provide a new network infrastructure
that can improve the scalability, performance, and fault-
tolerance of RMI. Since the routers (active routers) in ac-
tive networks can execute user-customized code, if these
intermediate active routers act as the agents of the remote
RMI services and serve the RMI invocations immediately, the
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response time of RMI applications can be highly shortened.
Furthermore, these active routers can provide services when
the RMI server crashes. In [4, 5], Wueng and Yang have
proposed a novel Java RMI mechanism called ActiveRMI that
utilizes the programmability of active networks to speed up
the invocation of remote RMI services.

ActiveRMI implements the RMI protocol on active net-
works. When an RMI request is issued, the intermediate active
router nearest to the client intercepts it and checks the local
code cache. If the service code has been already cached, the
active router executes the service code immediately to satisfy
the request. In [4], the preliminary experimental results show
that ActiveRMI improves the response time up to 36% in the
game-of-life benchmark [6].

ActiveRMI achieves three improvements. First, the user
response time are reduced in ActiveRMI compared with the
traditional Java RMI. Second, the server workload is shared
with the active routers. The centralized bottleneck problem
is alleviated. Third, the amount of network traffic between
the clients and the RMI server is reduced because the active
routers act as the agents to intercept client requests and satisfy
remote services immediately.

Since the early version of ActiveRMI lacks enough pro-
gramming tools to automate code translation, the design of
a code generator is important for the ActiveRMI project.
The ActiveRMI code generator is called ARMIGen (Ac-
tiveRMI Generator) [7]. We intend to achieve two goals in the
ARMIGen design. First, the interface and usage of ARMIGen
should be simple for programmers. Therefore, it can help
programmers to develop ActiveRMI code very effectively and
efficiently. They need not hand-code the details of ActiveRMI
network operations. Second, the performance of the generated
ActiveRMI code should be comparable to the hand-coded
version. Otherwise, if the generated code sacrifices the system
performance seriously, application development will be hin-
dered. To achieve these goals, we introduce code templates
to reduce the number of functions in which the programmer
should write code. We also try to optimize these templates,
so the generated code has acceptable performance.

The rest of the paper is organized as follows. Section 2
introduces the related work including ANTS and the recent
progress in ActiveRMI. Section 3 describes the ARMIGen
architecture design and its functionalities. Section 4 presents
the results of two experiments to justify the correctness,
the code generation performance, and the system execution
performance. Finally, Section 5 concludes the paper.



II. ANTS AND ACTIVERMI

In ActiveRMI, each active router has a code cache to store
remote RMI service code. The client stub is responsible for
handling the underlying packet transmissions on the client
side. Since ActiveRMI is developed on Janos [8, 9] and
ANTS [10, 11], it implements an extended ANTS protocol
to practice code caching. However, in the early development
ActiveRMI has not provided enough programming tools to
assist programmers in code writing.

ANTS is designed at MIT to provide an active network
platform [10, 11] with two features. First, ANTS supports
customized code execution to provide various network ser-
vices. Second, ANTS supports new protocols establishment
and deployment. In ANTS, capsules carry user code and data
to achieve the features. ANTS uses the capsule hierarchy to
deploy new network protocols.

In ANTS, a hierarchical model of capsules is specified
to support various application requirements. A capsule is a
basic unit carrying user code and data and includes well-
known routines for common processing at each active node.
A code group is a collection of correlative capsule types, and
a protocol is a collection of correlative code groups. ANTS
uses the capsules to deploy new protocols dynamically.

When a capsule arrives at an active router, the active router
checks the protocol of this capsule. If the router does not
have the protocol code, it sends a code-downloading request
back to the previous active router. The capsules are then
kept provisional until all the required code is prepared. If
all required code segments are prepared, the capsules are
awakened and ANTS continues the execution. If the previous
active router does not response the code, the capsules will be
discarded.

In ANTS, capsules and protocols are defined in Java files.
An ANTS application composes of the following files: a main
program, the definition of capsules and protocols, and the
script files. The script files contain a configuration and a
routing table, and a start file that executed by users. The
configuration records a physical IP address, a logic IP address,
and a network port. The logic IP address represents a specified
domain of each ANTS application. The Janos virtual machine
receives capsules from a fixed network port and dispatches
these capsules to different domain according to the logic IP.
The routing table records the physical IP addresses, the logic
IP addresses, and the network ports of active routers. The
active routers behave as tunnels because not all routers in
current IP networks are active routers. Programmers should
make sure that the capsules passing though specified active
routers and they have the information of the active routers
in the routing table. With the routing table, the capsules of
the application pass though the specified active routers and
program code can be loaded to the active routers with these
capsules.

ActiveRMI [4, 5] is designed to utilize the benefits provided
for active networks for Java RMI. There are RMI code caches
on intermediate active routers to cache RMI service code.
With the RMI code caches, the users repose time is reduced
and the scalability is enhanced because RMI services cached
on the intermediate active routers can satisfy the request as
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Fig. 1. The ActiveRMI infrastructure.

soon. In the ActiveRMI code caching mechanism, a manager
called ARMIMan maintains the RMI service code execution
and the cache.

ActiveRMI applications use several capsules to cooper-
ate with ARMIMan and the registry:lookup capsules,
registry capsules,argument capsules, andresult
capsules. Figure 1 illustrates the ActiveRMI infrastructure.
An RMI server usesregistry capsules to bind RMI service
information to the registry. The client sendslookup capsules
to the registry to search for the RMI services. The registry
processes thelookup capsules and then replies to the client
with the registration information and the corresponding stub.
The client can then invoke the stub to sendargument
capsules to the RMI server. When ARMIMan detects the
argument capsules, it intercepts these capsules and provides
RMI service code from the local RMI code caches. The stub
then receivesresult capsules and replies the result to the
client applications.

ARMIGen generates code for these capsules and summa-
rizes their definitions in protocol files. Furthermore, ARMI-
Gen inserts ActiveRMI function code to the program files of
the client and the server and produces corresponding scripts
files. To perform the security mechanism in ActiveRMI,
ARMIGen processes corresponding actions to achieve Ac-
tiveRMI protocols. The code translation procedure of ARMI-
Gen will be detailed further in Section 3.

III. C ODE GENERATION DESIGN

The major functionality of ARMIGen is to automatically
translate Java RMI code to ActiveRMI code. ARMIGen reads
the code templates and the specifications, and generates the
complete ActiveRMI application. This section provides the
detailed design insights in ARMIGen. Several design issues
are also discussed in this section.

A. The ARMIGen Architecture

The ARMIGen architecture is depicted in Figure 2. Pro-
grammers provide interface files and Java program code to
ARMIGen. ARMIGen translates these files to produce Ac-
tiveRMI executable binary files. There are three components
in ARMIGen: the parser, the code translator, and the back-
end processor. The parser analyzes the interface files and Java
program code, and check the syntax description to produce the
meta-information for ActiveRMI code generation. The code
translator reads the meta-information and then performs the
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Fig. 2. The ARMIGen architecture.

generation. The backend processor then reads the ActiveRMI
source code, compiles it, makes MD5 authentication, and
packs the binary byte code into the Java Archive (jar) files.

B. The Parser

The parser has two main tasks: checking the syntax of the
input files and summarizing the meta-information from the
input files. The parser checks the syntax of the Java program
code to ensure the validity of the generated ActiveRMI code.
It processes the Java program code, the configuration, and the
interface file to get the information of the remote service, the
arguments, and the type of the return results. In ActiveRMI,
the types of the arguments and the results are required to
be primitive types, because the underlying ANTS platform
marshals and unmarshals only the variables of primitive types.
The configuration files are also processed in advance for
setting up the environment of the ActiveRMI applications.
Finally, the code translator generates the ActiveRMI source
code with the configuration information.

C. The Code Translator

The code translator reads the meta-information and the
ANTS application templates, and generates the ActiveRMI
source files of scripts and Java code. It generates different
files for clients and servers respectively. For client-sidecode
generation, the code translator produces a configuration, astart
file, a routing table, a main program, a lookup capsule file,
and a lookup protocol file. For server-side code generation,
it generates scripts and Java source code. The back-end pro-
cessor then translates the Java source code to the executable
binary file by invokingantsjavac.

D. The Back-end Processor

The back-end processor performs three main steps for final
binary code generation: compiling the translated ActiveRMI
Java source code, adding the MD5 authentication code, and
archiving the byte code to the jar file. These steps are detailed
as follows.

Since ActiveRMI applications use the ANTS libraries,
the ActiveRMI source code must be compiled with the
ANTS compiler calledantsjavac. In this phase, ARMIGen
invokes antsjavac to compile ActiveRMI source code
files. After the compilation, ARMIGen generates the MD5
authentication code for remote service code. Because the
remote services are executed at the intermediate active routers
in ActiveRMI, a security mechanism is necessary to pre-
vent malicious attacks. Currently, ActiveRMI uses MD5 to
authenticate the remote service code. Therefore, ARMIGen
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Fig. 3. Processing flow in ARMIGen translation.

ActiveRMI Path:/home/jally/ANTS/ants3;
Registry Physical IP:10.0.3.2;
Registry Logic IP:70.0.0.99;
Registry Port:7099;
ARCache Physical IP:10.0.2.2;
ARCache Logic IP:70.0.0.50;
ARCache Port:7050;
Application Physical IP:10.0.2.5;
Application Logic IP:70.0.0.10;
Application Port:7010;

Fig. 4. An example of the ARMIGen configuration file.

encodes every byte code file with an MD5 authentication
signature. In the ActiveRMI implementation, jar files are
used in service registration, code cache maintenance, and
ActiveRMI invocation. The ActiveRMI registry will keep the
jar file of the client stub code in its repository. When a client
invokes the service code, the registry will send the jar file
to the client. The code cache also maintains the jar files for
building up execution environments without registry binding.
The complete service code is also archived in a jar file for
ActiveRMI execution.

E. Translation Process

The translation process in ARMIGen is depicted in Figure
3. To develop an ActiveRMI application, programmers should
prepare three main files: the ActiveRMI source function code,
the interface files, and the application environment configura-
tion. Since ActiveRMI heavily relies on ANTS, two necessary
ANTS methods,run() and receive(), are required in
ActiveRMI programming. When coding therun() method,
the programmer defines the initial operations at run time. The
receive() method defines the operations when the ANTS
application receives capsules. These two methods are also the
only part of methods which the programmer needs to code.

An ARMIGen configuration records the settings of the Ac-
tiveRMI environment. To execute the ActiveRMI applications
on an ANTS platform, the programmer needs to specify the
logical IP addresses, the corresponding physical IP addresses,
and the port numbers. Figure 4 is an example of the ARMIGen
configuration. In this example, the registry has a physical IP
10.0.3.2, a logical IP 70.0.0.99, and the port number 7099. The
first line is to specify the path of the application. Based on



this configuration, ANTS knows where to locate the services
and where the active router resides. As shown in Figure 4,
each configuration has four parts: the installation path of
ActiveRMI, the physical IP address, the logical IP address,
and the network port.

The correctness of the configuration is left for programmers.
If the programmers fill up the settings of the configura-
tion incorrectly, even ARMIGen can successfully generate
the executable ActiveRMI files. However, the ActiveRMI
application cannot find the RMI service. If the IP address
and port numbers of the remote ActiveRMI registry and the
intermediate active routers are not correctly set, ARMIGen
will not be aware of the incorrectness.

The meta-information composes the arguments of the ap-
plications and the setting of the ActiveRMI environment.
The arguments of applications include the remote service
name, the types of the method arguments, and the types
of the return results. The code translator merges the meta-
information into the ANTS application templates, and then
generates the ActiveRMI application source code. There are
two kinds of ANTS application templates: the ANTS appli-
cation code templates, and the script templates. The code
translator generates the ActiveRMI source code files for client
and server code separately. Their capsule file specifications
and corresponding protocol files are different. In client code,
the capsule specification defines thelookup capsule to
search remote service from the registry and thelookup
protocol to perform the search. In server code, the capsule
specification defines theregistry capsule to register the
binding information.

After the code translation, ARMIGen generates the com-
plete ActiveRMI source code and then compiles it to generate
the executable byte code files. As for authentication ARMI-
Gen generates MD5 authentication code for these byte code
files in a specified file. Finally, ARMIGen packages the byte
code files and the MD5 authentication file, and generates three
executable ActiveRMI jar files for the registry, the RMI code
caches, and the ActiveRMI protocol.

IV. PERFORMANCEEVALUATION

In this section, we report our evaluation of ARMIGen with
the code generation time and the user response time. We also
compare the user response time between the generated code
and hand-written ActiveRMI code to show the comparable
execution performance achieved by ARMIGen.

ARMIGen is developed with JDK 1.3.1. ActiveRMI is
developed on Janos that includes ANTS 2.0.2, Java NodeOS
1.0.2, and Janos VM 0.0.8. The underlying OS is FreeBSD
4.6.

Generally, there are many intermediate routers between
the client and the server. In our experiments, we built up
a primitive environment with three computers: a server, an
active router, and a client. In the first experiment, we evaluated
the code generation time. The network topology of the second
experiment was a isolated network environment containing the
server, the client, and the active router. There was no legacy
router in our experimental environments.

Four applications were used as the benchmarks in our
experiments: game of life [6], matrix multiplication, knight’s

Client Code Server Code

Parsing

and file 

generation

Compilation Packaging
Total

Time

Parsing

and file 

generation

Compilation Packaging
Total

Time

Game of Life 2732.8 3003.5 2468.0 8204.3 3158.7 6903.5 4449.2 14511.3

Matrix

Multiplication
2695.0 2606.4 2444.9 7746.1 2931.4 5568.8 4258.8 12759.0

Knight’s Tour 

Problem
2646.1 2989.0 2633.6 8168.6 3850.4 7457.3 4568.7 15876.3

Color-depth

Changing
2686.4 2994.1 2508.0 8188.5 3122.7 6882.1 4378.9 14383.7

Fig. 5. The average code generation time in milliseconds. Wecompiled the
code for 20 times.

Cold Cache Miss Cache Hit

Generated

Code

Hand-written

Code

Overhead

Ratio

Generated

Code

Hand-written

Code

Overhead

Ratio

0.09% 0.12%

0.42%

0.21%

0.31%

0.86%

1.16%

0.96%

Game of Life 8798.2 8790.4 4697.6 4691.8

Matrix

Multiplication
8828.1 8752.7 4695.8 4676.3

Knight’s Tour 

Problem
53955.9 53336.8 49407.8 49306.2

Color-depth

Changing
8820.6 8736.4 4696.1 4681.7

Fig. 6. The average user response time of the generated code and hand-
written code in milliseconds. Each benchmark application was executed 20
times.

tour [12], and color-depth changing. The game-of-life program
is played on a grid of square cells. Each cell can be live or
dead. The matrix multiplication is a4× 4 multiplication. The
knight’s tour program shows the steps of a knight chess that
walks by an “L” rule in a5 × 5 board. These three remote
services consume large computing power. Finally, the color-
depth changing application converts a color BMP picture to
a 256-grey BMP picture.

The code generation time was measured at an AMD K6-
2 400MHz PC with 392MB RAM. The generation time is
composed of three parts: the parsing time, the byte code
compilation time, and the back-end processing time. Figure
5 shows the detailed results for client code generation and
server code generation.

The total code generation time of the client code is approx-
imately 39% less than the server code generation, because
the server code needs to be packaged to three jar files for
service registration, code cache maintenance, and ActiveRMI
invocation. However, the client code is packaged to only a
jar file. Furthermore, ARMIGen needs to insert the registry
code to the remote service code and complie it for ActiveRMI
execution. Therefore, the total code generation time of server
code is longer then the generation time of client code.

To verify the performance of generated code, we built up a
small environment to measure the user response time. The
environment contained three PCs as the client, the active
router and the server. The client and the active router were
two Pentium II PCs running at 300MHz with 256MB RAM.
The server was an AMD K6-2 PC running at 400MHz
with 392MB RAM. The network is 100M bps Ethernet. The
average performance results of the generated code and the



hand-written code are depicted in Figure 6.
In this experiment, the maximum overhead ratio of the

generated code is 1.16%. This is because that ARMIGen
generates extra variables to record the remote method names,
the arguments of the method, and the result. These variables
will be additionally processed in the generated code. Overall,
we can find that the performance of the generated code is
comparable to the performance of the hand-written code.

V. CONCLUSIONS ANDFUTURE WORK

Socket programming is a general mechanism for pro-
grammers to develop distributed applications. However, itis
complicated and error-prone for programmers because they
need to hand-code socket functions. Java RMI provides a
convenient way for programmers to design distributed ap-
plications because they do not need to handle underlying
network transmission details. However, this paradigm suffers
when many clients simultaneously send a great number of
requests to a server. The server workload will be highly
burdened and the traffic between the clients and the server
is intensively congested. To these RMI shortcomings, active
networks provide a new network infrastructure that can be
used to improve the scalability and performance of RMI.

ActiveRMI improves the traditional Java RMI by exploit-
ing active networks technology. With RMI code caches, the
response time of ActiveRMI applications is reduced and server
workload is distributed to the intermediate active routers.
Furthermore, the amount of the network traffic between the
active routers and the RMI server is also reduced. To facilitate
ActiveRMI application development, code generation toolsare
crucial.

In this paper, we report the design of a code generator called
ARMIGen. Programmers can use ARMIGen to conveniently
develop ActiveRMI applications. They only need to design
Java program code, the interface files, and the configuration.
ARMIGen automatically generates the ActiveRMI source
code and the executable ActiveRMI files. The preliminary ex-
perimental results show that the performance of the generated
code is comparable to the performance of the hand-written
code.

There are still some issues left for further discussion.
For example, error handling and exception handling are not
completely discussed in the present ActiveRMI development.
Another issue is debugging. Since there are underlying RMI
code caches, debugging ActiveRMI code becomes compli-
cated. This will be in our future implementation plan.
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