Design of a Code Generator for ActiveRMI

Meng-Chun Wueng, Fu-Fang Yang and Cheng-Zen Yang
Department of Computer Science and Engineering
Yuan Ze University
Chungli, Taiwan, R.O.C.
E-mail: {jun,jally,czyang @syslab.cse.yzu.edu.tw

Abstract— Java RMI provides a convenient way for program- response time of RMI applications can be highly shortened.
mers to design distributed applications in traditional neworks. Furthermore, these active routers can provide servicesiwhe
However, this paradigm suffers from a centralize bottlenek the RMI server crashes. In [4, 5], Wueng and Yang have

problem when many clients simultaneously send a large numibe . .
of requests to the server. ActiveRMI improves the Java RMI proposed a novel Java RMI mechanism called ActiveRMI that

performance by employing active networks technology with a Utilizes the programmability of active networks to speed up
code caching scheme. With ActiveRMI, the server bottleneck the invocation of remote RMI services.

roblem can be relieved, and the amount of network traffic . - .
Eetween clients and RMI servers can be reduced. Consequewntl ActiveRMI implements the. R.MI protocql on actlye net-.
the user response time is also highly reduced. However, thewy works. When an RMI request is issued, the intermediateeactiv
version of ActiveRMI lacks programming tools to help program- router nearest to the client intercepts it and checks thal loc
mers write code. In this paper, we report a code generator code cache. If the service code has been already cached, the
design called ARMIGen. Programmers can use ARMIGen to active router executes the service code immediately tsfgati
conveniently develop ActiveRMI applications and deploy tem the request. In [4], the preliminary experimental restittsve

on active networks. We have evaluated the generation time an . h . o
the execution time of the generated ActiveRMI applicationsThe ~ that ActiveRMI improves the response time up to 36% in the

preliminary experimental results show that the performance of game-of-life benchmark [6].
the generated code is comparable to the performance of the actiyeRMI achieves three improvements. First, the user
hand-written code. The experiments also show that ARMIGen fi d d in ActiveRMI| d with th
is an effective and efficient programming tool. requnse Ime are reduced in Active compare ,W' e
K ds_ ActiveRMI. Code G fion. J RMI. ANTS traditional Java RMI. Second, the server workload is shared
~eywords—AcliveriMl, Lode Seneration, Java kML ' with the active routers. The centralized bottleneck pnable
Active Networks.
is alleviated. Third, the amount of network traffic between
I. INTRODUCTION the clients and the RMI server is reduced because the active

Java RMI (Remote Method Invocation) provides a conveiouters act as the agents to intercept client requests distysa
nient way for programmers to design distributed applicatio r'emote services immediately.
because RMI encapsulates the transmission details. In RMI,Since the early version of ActiveRMI lacks enough pro-
the client stub and the server skeleton provide programmiggamming tools to automate code translation, the design of
interfaces to the client and the RMI server. Therefore, th& code generator is important for the ActiveRMI project.
programmers need not to handle packets sending/receivingTihe ActiveRMI code generator is called ARMIGen (Ac-
detail. However, this programming paradigm suffers from #@veRMI Generator) [7]. We intend to achieve two goals in the
centralized bottleneck problem when many clients simultsARMIGen design. First, the interface and usage of ARMIGen
neously send a large number of requests to the server. Téigould be simple for programmers. Therefore, it can help
server will deny or postpone further requests due to its ieaprogrammers to develop ActiveRMI code very effectively and
workload. Furthermore, the traffic in the path between thefficiently. They need not hand-code the details of ActivdRM
clients and the server is intensively congested. Thergfongetwork operations. Second, the performance of the gestbrat
not only the response time is lengthy, but also the networkctiveRMI code should be comparable to the hand-coded
bandwidth along the path is completely consumed. In additiosersion. Otherwise, if the generated code sacrifices thersys
to the scalability problem, the traditional RMI paradigrs@l performance seriously, application development will be- hi
suffers from the single point failure problem when the servedered. To achieve these goals, we introduce code templates
crashes or the network is partitioned. to reduce the number of functions in which the programmer

To alleviate these RMI shortcomings, as discussed in [1$hould write code. We also try to optimize these templates,
active networks [2, 3] provide a new network infrastructurgo the generated code has acceptable performance.
that can improve the scalability, performance, and fault- the rest of the paper is organized as follows. Section 2
tolerance of RMI. Since the routers (active routers) in aGuroduces the related work including ANTS and the recent
tive networks can execute user-customized code, if thesgygress in ActiveRMI. Section 3 describes the ARMIGen
intermediate active routers act as the agents of the remofgshitecture design and its functionalities. Section 4senés
RMI services and serve the RMI invocations immediately, thge results of two experiments to justify the correctness,

*This research was supported by National Science Council@f® under the code generation performance, and the system execution
grant NSC 92-2213-E-155-036. performance. Finally, Section 5 concludes the paper.

Client Server

II. ANTS AND ACTIVERMI

In ActiveRMI, each active router has a code cache to store W %e' ‘%ﬂ RMI Server
remote RMI service code. The client stub is responsible for Service
handling the underlying packet transmissions on the clienteuet Results Active Active Results
side. Since ActiveRMI is developed on Janos [8, 9] and [Crenswn | Router Router
ANTS [10, 11], it implements an extended ANTS protocol RMI Code Cache RMI Code Cache
to practice code caching. However, in the early developmepsS*=t L - ‘ ol T =
ActiveRMI has not provided enough programming tools tq R Letwka ﬂNem‘k o

assist programmers in code writing.

ANTS is designed at MIT to provide an active network
platform [10, 11] with two features. First, ANTS supports
customized code execution to provide various network ser-
vices. Second, ANTS supports new protocols establishment
and deployment. In ANTS, capsules carry user code and d&@on. In the ActiveRMI code caching mechanism, a manager
to achieve the features. ANTS uses the capsule hierarchy@alled ARMIMan maintains the RMI service code execution
deploy new network protocols. and the cache.

In ANTS, a hierarchical model of capsules is specified ActiveRMI applications use several capsules to cooper-
to support various application requirements. A capsule is &e¢ with ARMIMan and the registryl ookup capsules,
basic unit carrying user code and data and includes well€gi stry capsules,ar gument capsules, and esul t
known routines for common processing at each active nodeapsules. Figure 1 illustrates the ActiveRMI infrastruetu
A code group is a collection of correlative capsule types, anAn RMI server uses egi st ry capsules to bind RMI service
a protocol is a collection of correlative code groups. ANT$nformation to the registry. The client senidsokup capsules
uses the capsules to deploy new protocols dynamically. to the registry to search for the RMI services. The registry

When a capsule arrives at an active router, the active rout@focesses theookup capsules and then replies to the client
checks the protocol of this capsule. If the router does n#ith the registration information and the correspondingost
have the protocol code, it sends a code-downloading requddte client can then invoke the stub to seadgunent
back to the previous active router. The capsules are théapsules to the RMI server. When ARMIMan detects the
kept provisional until all the required code is prepared. IAr gunent capsules, it intercepts these capsules and provides
all required code segments are prepared, the Capsu|es BRI service code from the local RMI code caches. The stub
awakened and ANTS continues the execution. If the previodigen receives esul t capsules and replies the result to the
active router does not response the code, the capsulesewill @ient applications.
discarded. ARMIGen generates code for these capsules and summa-

In ANTS, capsules and protocols are defined in Java file§izes their definitions in protocol files. Furthermore, ARMI
An ANTS application composes of the following files: a mairf3en inserts ActiveRMI function code to the program files of
program, the definition of capsules and protocols, and tt{ge client and the server and produces corresponding script
script files. The script files contain a configuration and &les. To perform the security mechanism in ActiveRMI,
routing table, and a start file that executed by users. THERMIGen processes corresponding actions to achieve Ac-
configuration records a physical IP address, a logic IP addretiveRMI protocols. The code translation procedure of ARMI-
and a network port. The logic IP address represents a spkcifieen will be detailed further in Section 3.
domain of each ANTS application. The Janos virtual machine
receives capsules from a fixed network port and dispatches
these capsules to different domain according to the logic IP The major functionality of ARMIGen is to automatically
The routing table records the physical IP addresses, thie logranslate Java RMI code to ActiveRMI code. ARMIGen reads
IP addresses, and the network ports of active routers. THee code templates and the specifications, and generates the
active routers behave as tunnels because not all routersciemplete ActiveRMI application. This section provides the
current IP networks are active routers. Programmers shoulgtailed design insights in ARMIGen. Several design issues
make sure that the capsules passing though specified acié@e also discussed in this section.
routers and they have the information of the active routers _
in the routing table. With the routing table, the capsules df The ARMIGen Architecture
the application pass though the specified active routers andThe ARMIGen architecture is depicted in Figure 2. Pro-
program code can be loaded to the active routers with thegeammers provide interface files and Java program code to
capsules. ARMIGen. ARMIGen translates these files to produce Ac-

ActiveRMI [4, 5] is designed to utilize the benefits providediveRMI executable binary files. There are three components
for active networks for Java RMI. There are RMI code cacheésa ARMIGen: the parser, the code translator, and the back-
on intermediate active routers to cache RMI service codend processor. The parser analyzes the interface files sad Ja
With the RMI code caches, the users repose time is reducptbgram code, and check the syntax description to prodgce th
and the scalability is enhanced because RMI services cachmedta-information for ActiveRMI code generation. The code
on the intermediate active routers can satisfy the request manslator reads the meta-information and then perforras th

Fig. 1. The ActiveRMI infrastructure.

IIl. CODE GENERATION DESIGN

ARMIGen Java
Program Code ‘ Interface Files ‘ ‘ Configurations ‘

Interface 1 ‘

Files Cod Back-end Executable X ¥
Parser oce ackeen ActiveRMI Parsing (Syntax checking and parsing |
Translator Processing J Files kS

Meta information

Java ’ ‘ —
Program ANTri Qp{::tlgjnon and spemﬁed%program code ANTS Application
Code prates [Code Translation Templates
]

Code Translation

)
[ActiveRMI source code]

Fig. 2. The ARMIGen architecture.

MDS5 Authentication

v
‘ Byte Code Compilation ‘

Back-end Processing jar Packaging

v

l Executable ActiveRMI files l

generation. The backend processor then reads the ActiveRMI
source code, compiles it, makes MD5 authentication, and

. . ,) | Fig. 3. Processing flow in ARMIGen translation.
packs the binary byte code into the Java Archive (jar) files. 9 g

B. The Parser ActiveRMI Path:/home/jally/ANTS/ants3;

The parser has two main tasks: checking the syntax of the Registry Physical 1P:10.0.3.2;
input files and summarizing the meta-information from the Registry Logic 1P:70.0.0.99;
input files. The parser checks the syntax of the Java program Registry Port:7099;
code to ensure the validity of the generated ActiveRMI code. ARCache Physical IP:10.0.2.2;
It processes the Java program code, the configuration, @nd th ARCache Logic 1P:70.0.0.50;
interface file to get the information of the remote servite, t ARCache Port:7050;
arguments, and the type of the return results. In ActiveRMI, Application Physical IP:10.0.2.5;
the types of the arguments and the results are required to Application Logic 1P:70.0.0.10;
be primitive types, because the underlying ANTS platform Application Port:7010;
marshals and unmarshals only the variables of primitivesyp Fig. 4. An example of the ARMIGen configuration file.
The configuration files are also processed in advance for
setting up the environment of the ActiveRMI applications.
Finally, the code translator generates the ActiveRMI seurc@ncodes every byte code file with an MD5 authentication

code with the configuration information. signature. In the ActiveRMI implementation, jar files are
used in service registration, code cache maintenance, and
C. The Code Trandator ActiveRMI invocation. The ActiveRMI registry will keep the

The code translator reads the meta-information and tf@r file of the client stub code in its repository. When a diien
ANTS application templates, and generates the ActiveRMIVOkes the service code, the registry will send the jar file
source files of scripts and Java code. It generates differdftthe client. The code cache also maintains the jar files for
files for clients and servers respectively. For client-sidde building up execution environments without registry bimgli
generation, the code translator produces a configuratistara The complete service code is also archived in a jar file for
file, a routing table, a main program, a lookup capsule filéActiveRMI execution.
and a lookup protocol file. For server-side code generation, .
it generates scripts and Java source code. The back-end d? Trandation Process
cessor then translates the Java source code to the executablThe translation process in ARMIGen is depicted in Figure

binary file by invokingant sj avac. 3. To develop an ActiveRMI application, programmers should
prepare three main files: the ActiveRMI source function ¢code
D. The Back-end Processor the interface files, and the application environment coméigu

The back-end processor performs three main steps for firtédn. Since ActiveRMI heavily relies on ANTS, two necessary
binary code generation: compiling the translated ActivdRMANTS methods,y un() andrecei ve(), are required in
Java source code, adding the MD5 authentication code, aAdtiveRMI programming. When coding threun() method,
archiving the byte code to the jar file. These steps are @etailthe programmer defines the initial operations at run time2 Th
as follows. recei ve() method defines the operations when the ANTS

Since ActiveRMI applications use the ANTS libraries,application receives capsules. These two methods aretadso t
the ActiveRMI source code must be compiled with theonly part of methods which the programmer needs to code.
ANTS compiler calledant sj avac. In this phase, ARMIGen An ARMIGen configuration records the settings of the Ac-
invokes ant sj avac to compile ActiveRMI source code tiveRMI environment. To execute the ActiveRMI applicatson
files. After the compilation, ARMIGen generates the MD5on an ANTS platform, the programmer needs to specify the
authentication code for remote service code. Because thmgical IP addresses, the corresponding physical IP adéses
remote services are executed at the intermediate actitersou and the port numbers. Figure 4 is an example of the ARMIGen
in ActiveRMI, a security mechanism is necessary to preconfiguration. In this example, the registry has a physiPal |
vent malicious attacks. Currently, ActiveRMI uses MD5 t010.0.3.2, a logical IP 70.0.0.99, and the port number 7088. T
authenticate the remote service code. Therefore, ARMIGdinst line is to specify the path of the application. Based on

this configuration, ANTS knows where to locate the services Client Code Server Code
and where the active router resides. As shown in Figure 4, paing | | Tow | Parsing o | Tow
] .)) and file ompilation | Packaging and file | Compilation | Packaging
each configuration has four parts: the installation path of
ACtiveRMl, the thSicaI |P addl’eSS, the IOgicaI |P addreS;GameofLife 2732.8 3003.5 2468.0 | 8204.3 | 3158.7 6903.5 44492 | 14511.3
and the network port. Matrix | o050 | 26064 | 24449 | 7746.1 | 29314 | 55688 | 42588 | 12750.0
i)) Multiplication
The correctness of the configuration is left for programmersguignes Tour
If the programmers fill up the settings of the configurar Frebem
. . lor-depth
tion incorrectly, even ARMIGen can successfully generate cramgne | 26564 | 20901 | 25080 | 81885 | 31227 | 68521 | 43789 | 143837
the executable ActiveRMI files. However, the ActiveRMI
application cannot find the RMI service. If the IP addressig. 5. The average code generation time in millisecondscuvepiled the
and port numbers of the remote ActiveRMI registry and th&ode for 20 times.
intermediate active routers are not correctly set, ARMIGen

will not be aware of the incorrectness.

generation Time generation Time

2646.1 2989.0 2633.6 | 8168.6 | 3850.4 7457.3 4568.7 | 15876.3

The meta-information composes the arguments of the ap- Cold Cache Miss Cache Hit
plications and the setting of the ActiveRMI environment,
. . . . Generated | Hand-written | Overhead | Generated | Hand-written | Overhead
The arguments of applications include the remote servige Code Code Ratio | Code Code Ratio

name, the types of the method arguments, and the types cameotLite 8798.2 87904 | 0.09% | 46976 | 46918 | 0.12%
of the return results. The code translator merges the meta- Matrix

) X . . i Multiplicati 8828.1 8752.7 0.86% 4695.8 4676.3 0.42%
information into the ANTS application templates, and thern K“_ ;‘L“;“’“

. . . nigl S lour p
generates the ActiveRMI application source code. There are problem 539559 | 533368 | L16% | 494078 | 493062 | 021%
two kinds of ANTS application templates: the ANTS appli-| Color-depth 8820.6 87364 | 096% | 4696.1 46817 | 031%

Changing

Ll

cation code templates, and the script templates. The code
translator generates the ActiveRM_I source c0(_je files f@_mli_ Fig. 6. The sverage user response time of the generated catiband-
and server code separately. Their capsule file specifiGatiofritten code in miliseconds. Each benchmark applicaticas wexecuted 20
and corresponding protocol files are different. In cliendeo times.

the capsule specification defines th@okup capsule to

search remote service from the registry and theokup

proto_c_ol to perfqrm the segrch. In server code, t_he Caps‘{@,;r[lZ], and color-depth changing. The game-of-life peg
specification defines theegi stry capsule to register the g played on a grid of square cells. Each cell can be live or

binding information. dead. The matrix multiplication is 4x 4 multiplication. The

After the code translation, ARMIGen generates the cOMgights tour program shows the steps of a knight chess that
plete ActiveRMI source code and then compiles it to generaig, ks by an “L” rule in a5 x 5 board. These three remote

the executable byte code files. As for authentication ARMlggrvices consume large computing power. Finally, the eolor

Gen generates MD5 authentication code for these byte coggniy changing application converts a color BMP picture to
files in a specified file. Finally, ARMIGen packages the byte, 256-grey BMP picture.

code files and the MD5 authentication file, and generates thre
executable ActiveRMI jar files for the registry, the RMI code2
caches, and the ActiveRMI protocol.

The code generation time was measured at an AMD K6-
400MHz PC with 392MB RAM. The generation time is
composed of three parts: the parsing time, the byte code
IV. PERFORMANCEEVALUATION compilation time, and the back-end processing time. Figure
In this section, we report our evaluation of ARMIGen with® shows the detailed results for client code generation and
the code generation time and the user response time. We af&§ver code generation.
compare the user response time between the generated codEhe total code generation time of the client code is approx-
and hand-written ActiveRMI code to show the comparablénately 39% less than the server code generation, because
execution performance achieved by ARMIGen. the server code needs to be packaged to three jar files for
ARMIGen is developed with JDK 1.3.1. ActiveRMI is service registration, code cache maintenance, and AdiNeR
developed on Janos that includes ANTS 2.0.2, Java Node@®ocation. However, the client code is packaged to only a
1.0.2, and Janos VM 0.0.8. The underlying OS is FreeBS[r file. Furthermore, ARMIGen needs to insert the registry
4.6. code to the remote service code and complie it for ActiveRMI
Generally, there are many intermediate routers betweéecution. Therefore, the total code generation time ofeser
the client and the server. In our experiments, we built upode is longer then the generation time of client code.
a primitive environment with three computers: a server, an To verify the performance of generated code, we built up a
active router, and a client. In the first experiment, we eatdd small environment to measure the user response time. The
the code generation time. The network topology of the secomhvironment contained three PCs as the client, the active
experiment was a isolated network environment contairtieg t router and the server. The client and the active router were
server, the client, and the active router. There was no jegatwo Pentium Il PCs running at 300MHz with 256MB RAM.
router in our experimental environments. The server was an AMD K6-2 PC running at 400MHz
Four applications were used as the benchmarks in owith 392MB RAM. The network is 100M bps Ethernet. The
experiments: game of life [6], matrix multiplication, ks average performance results of the generated code and the

hand-written code are depicted in Figure 6.

In this experiment, the maximum overhead ratio of the
generated code is 1.16%. This is because that ARMIGe
generates extra variables to record the remote method names
the arguments of the method, and the result. These variabléd
will be additionally processed in the generated code. Qlvera
we can find that the performance of the generated code is]
comparable to the performance of the hand-written code.

(5]

V. CONCLUSIONS ANDFUTURE WORK (0]

Socket programming is a general mechanism for pro-
grammers to develop distributed applications. Howevels it
complicated and error-prone for programmers because th@)?]
need to hand-code socket functions. Java RMI provides[ay
convenient way for programmers to design distributed ap-
plications because they do not need to handle underlying
network transmission details. However, this paradigmesaff [12]
when many clients simultaneously send a great number of
requests to a server. The server workload will be highly
burdened and the traffic between the clients and the server
is intensively congested. To these RMI shortcomings, activ
networks provide a new network infrastructure that can be
used to improve the scalability and performance of RMI.

ActiveRMI improves the traditional Java RMI by exploit-
ing active networks technology. With RMI code caches, the
response time of ActiveRMI applications is reduced andeserv
workload is distributed to the intermediate active routers
Furthermore, the amount of the network traffic between the
active routers and the RMI server is also reduced. To fatalit
ActiveRMI application development, code generation t@oks
crucial.

In this paper, we report the design of a code generator called
ARMIGen. Programmers can use ARMIGen to conveniently
develop ActiveRMI applications. They only need to design
Java program code, the interface files, and the configuration
ARMIGen automatically generates the ActiveRMI source
code and the executable ActiveRMI files. The preliminary ex-
perimental results show that the performance of the geserat
code is comparable to the performance of the hand-written
code.

There are still some issues left for further discussion.
For example, error handling and exception handling are not
completely discussed in the present ActiveRMI development
Another issue is debugging. Since there are underlying RMI
code caches, debugging ActiveRMI code becomes compli-
cated. This will be in our future implementation plan.

REFERENCES

[1] C.-Z. Yang and C.-W. Chen, “Issues on the RPC Paradigmadn
tive Networks,” in Proceedings of 2002 Active Networking Workshop,
(Chungli, Taiwan), pp. 206213, Yuan Ze University, Seft02

D. Tennenhouse, J. Smith, W. D. Sincoskie, D. Wethegait] G. Min-
den, “A Survey of Active Network Research,EEE Communications
Magazine, vol. 35, pp. 80-86, Jan. 1997.

D. Tennenhouse and D. Wetherall, “Towards an Active NekwArchi-
tecture,” Computer Communication Review, vol. 26, no. 2, pp. 5-18,
1996. Also in Proceedings of Multimedia Computing and Nekig
(MMCN 96).

M.-C. Wueng and C.-Z. Yang, “Design and ImplementatidnacJava
RMI Caching Mechanism on Active Networks,” iroceedings of the
6th International Conference on Advanced Communication Technology
(ICACT 2004), (Phoenix Park, Korea), pp. 561-566, Feb. 2004.

] P. Callahan,

M.-C. Wueng and C.-Z. Yang, “Design of Consistency Maimdnce in
ActiveRMI Code Caching,” inProceedings of 2003 Active Networking
Workshop, (Chungli, Taiwan), pp. 17-22, Sept. 2003.
“What is the Game
http://www.math.com/students/wondersl/life/life.html
F.-F. Yang, “Design of a Code Generator for Java Remotehbt
Invocation on Active Networks,” Master’s thesis, Yuan Zeiugmsity,
Chungli, Taiwan, ROC, July 2004.

L. Peterson, Y. Gottlieb, M. Hibler, P. Tullmann, J. Lepu, S. Schwab,
H. Dandekar, A. Purtell, and J. Hartman, “An OS Interface Aative
Routers,”|EEE Journal on Selected Areas of Communication, vol. 19,
pp. 473-487, Mar. 2001.

P. Tullmann, M. Hibler, and J. Lepreau, “Janos: A Javée@ed
OS for Active Network Nodes,1EEE Journal on Selected Areas in
Communications, vol. 19, pp. 501-510, Mar. 2001.

D. Wetherall, Service Introduction in an Active Network. PhD thesis,
Massachusetts Institute of Technology, Feb. 1999.

D. Wetherall, J. Guttag, and D. Tennenhouse, “ANTS: Aolki for
Building and Dynamically Deploying Network Protocols,” Rroceed-
ings of First IEEE Conference on Open Architectures and Network
Programming (OPENARCH’98), pp. 117-129, Apr. 1998.

D. L. Katz, B. Carnahan, E. I. Organick, and S. D. NavafEducation
and Training: Computers in Engineering Education 1960479
Proceedings of the 1962 ACM National Conference on Digest of
Technical Papers, pp. 22-23, 1992.

of Life?.”

