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Abstract— In our past research, ActiveRMI was proposed
to employ the native benefits in active networks to improve
system performance. However, in the past ActiveRMI design,
the load sharing issue has not been considered completely.
Although ActiveRMI shows its prominence to the traditional Java
RMI programming paradigm, the front edge active routers may
still become the performance bottleneck if an extremely large
number of client requests burst into these routers. Therefore,
in this paper we propose a dynamic server-initiated distributed
load sharing scheme for ActiveRMI. The proposed load sharing
scheme has two major design features. First, the average user
response time can be reduced by sharing loads of overloaded
active routers with other nearby active routers which are lightly
loaded or moderately loaded. Second, the overhead incurred by
load sharing transfer is kept minimal by initiating the transfer
on demand. To study the performance improvements, we have
conducted preliminary simulation experiments. The results show
that the performance of ActiveRMI with load sharing support is
superior to the performance of ActiveRMI without load sharing
support.

Keywords— Load sharing, ActiveRMI, Java RMI, Active
Networks.

I. INTRODUCTION

Since 1994, the concept of active networks [14, 13] has
been proposed to introduce the programmability to traditional
routers. The programmability enhancement mainly copes with
three problems existing in the traditional network environ-
ment: (1) the difficulty for new technology integration, (2) in-
nate poor performance due to the protocol stack structure, and
(3) the difficulty of the deployment of new services. The main
reason behind these problems is that traditional routers are just
responsible for data transmission. On the contrary, the routers,
called active routers or active nodes, in active networks are
designed to be able to execute the user-specific code embedded
in the specialized network packets, called active packets or
capsules. Therefore, active networks can be used to enhance
the performance of traditional network services, and facilitate
the deployment of new network services. In many studies (e.g.
[3, 7]), the prominent flexibility and programmability of active
networks have been justified.

In the research and development of active networks, one
major absence is the lack of the discussion of a suitable
programming paradigm for the programmable active routers.
For example, traditional RMI/RPC middleware design is not
aware of the programmability introduced in active networks.
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The applications developed with the traditional RMI/RPC
paradigm cannot be benefitted in active networks. By contrast,
their performance may be hindered because the active routers
have the overhead to process active packets. In addition, the
system scalability of the traditional RMI/RPC paradigm on
active networks cannot be effectively improved due to its
employment of a remote centralized server.

To provide a suitable programming paradigm for active net-
works with Java middleware, Wueng and Yang [19, 20] pro-
posed a new RMI programming paradigm called ActiveRMI
that can exploit the feature of dynamic code execution and
deployment in active networks. In ActiveRMI, when a client
invokes a service, its requests are intercepted and processed
on a nearby active routers rather than the remote RMI server.
The interceptive active router then acts as an service agent
to download the service code from the remote RMI server
and initiate the service to satisfy the client requests. In
addition, the interceptive active router maintains a service code
cache for future client invocations. In this new service model,
ActiveRMI achieves four major advantages. First, it shortens
the service response time by performing remote services at
the proximate active routers. Second, the workloads of remote
RMI servers are shared with the intermediate active routers
in this implicit multi-tier architecture. The central bottleneck
problem in traditional tier-to-tier RMI service model is re-
lieved. Third, service availability is highly improved because
remote services are distributed at nearby active routers. The
interceptive active routers become the agents of the remote
RMI server to satisfy client requests. Last, the system scala-
bility is also highly improved because most client requests are
satisfied at the nearby active routers. From their preliminary
experimental results, ActiveRMI shows its prominence in
distributed computing benchmarks [19, 20, 21].

As shown in the preliminary experiments, ActiveRMI ef-
fectively reduces the network access time and shortens the
user response time. However, although ActiveRMI can relieve
the heavy load of the remote RMI server by distributing the
workload to the active routers nearby the clients, the active
routers in the original ActiveRMI design may still become
performance bottlenecks if many client requests burst into
the routers. In such a situation, while the workload of the
remote server is reduced, the workload of each active router
is increased substantially. Observing this situation, we are
motivated to conduct research on the load distribution issue
to prevent some active router from being the performance



bottleneck.
Load distribution has been studied for many years (e.g [12,

10, 8, 23, 22, 2, 6]). According to the criteria mentioned in
[12], it can be further discussed as load sharing and load
balancing. The major concern of load balancing is how to
equalize the loads of all sites. By contrast, the major concern
of load sharing is how to maximize the system performance
by relieving the system peak overload with other available
sites. Since load balancing algorithms require higher network
bandwidth to actively balance server loads, load sharing
approaches are more suitable for active networks.

Previous load sharing approaches can be further classified
from different viewpoints, such as centralized vs. distributed,
static vs. dynamic, and server-side and client-side [5, 12, 16].
From the viewpoint of the location of the load dispatcher, they
can be classified into two categories for our discussion [12]:
the centralized approaches (e.g. [2, 4, 6]) and the distributed
approaches (e.g. [10, 8, 23, 22]). In the centralized approaches,
there is a central host or agent to make the load migration
decision. For example, in the Comet algorithm a central host
decides whether an agent should be migrated [6]. In such a
centralized system, two important issues should be considered.
First, to prevent the central host from being the serious system
bottleneck, the tasks executed on the central host need to
be lightweighted. Second, to prevent the central host from
being the single point of failure, fault tolerance mechanisms
need to be incorporated in the system, which may result in
performance degradation. For an active network environment,
centralized approaches are not suitable because it is hard to
designate an active router as the central agent across several
administrative boundaries. Furthermore, the communication
lag between active routers may be too large for collecting
up-to-date load information.

In contrast, no central host exists for the distributed load
balancing approaches. For example, the CAPE system pro-
vides a peer-to-peer protocol to distribute load information
between load balancing objects [22]. For an active network
environment, a distributed load balancing approach is more
suitable for its distributed collaboration nature. However, two
important issues should be considered. First, the communi-
cation overhead of distributively collecting load information
needs to be minimized as much as possible. Otherwise, the
system scalability is limited to a small range. Second, the
demand-driven policy for deciding which is the candidate
to initiate load sharing influences the system performance.
Basically, there are three kinds of demand-driven policies [12,
1]: sender-initiated policies, receiver-initiated policies, and
symmetrically initiated policies. Since usually active routers
are not tightly located in a local network environment, the
sender-initiated policies are more suitable because other two
kinds of policies may incur a lot amount of network transfer.

In this paper, we propose a dynamic server-initiated dis-
tributed load sharing scheme for ActiveRMI with two major
design goals. First, the average user response time can be re-
duced by sharing loads of overloaded active routers with other
nearby active routers which are lightly loaded or moderately
loaded. Second, the overhead incurred by load sharing transfer
is kept minimal by initiating the transfer on demand.
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Fig. 1. The ActiveRMI infrastructure.

To study its performance improvement, we have conducted
preliminary simulation experiments. The results show that
the performance of ActiveRMI with load sharing support
is superior to the performance of ActiveRMI without load
sharing support.

The rest of the paper is organized as follows. Section 2
introduces the related work including the recent progress in
ActiveRMI and past studies on load sharing and balancing.
Section 3 describes the load sharing design and its functional-
ities. Section 4 presents the results of simulation experiments.
Finally, Section 5 concludes the paper and discusses the future
research directions.

II. RELATED WORK

In this section, we first briefly review the programming
model in ActiveRMI [19, 20, 21] which can automatically
migrate remote services to the nearby active routers. Then we
briefly review several recent studies on distributed load sharing
and balancing, and discuss their features with our proposed
load sharing scheme.

A. ActiveRMI

In the ActiveRMI paradigm, each active router is designed
to be aware of Java RMI service invocations, and to act as
an agent of the remote RMI servers by executing the service
code from its local code cache. When the active router gets
client requests, it first checks the local code cache. If there
is a valid copy of the service code, the router immediately
activates the service to satisfy the client requests. Otherwise,
it tries to get the service code from the remote RMI server
by forwarding the client requests. Figure 1 illustrates the
ActiveRMI infrastructure.

To facilitate such an execution model, the client stub is
responsible for handling the underlying packet transmissions
on the client side. The traditional RMI code generator is
also re-designed to generate ActiveRMI client/server stubs.
Figure 2 illustrate the procedure of code generation in which
programmers provide interface files and Java program code
to ARMIGen. ARMIGen translates these files to produce
ActiveRMI executable binary files. Since ActiveRMI is de-
veloped on Janos [11, 15] and ANTS [17, 18], it implements
an extended ANTS protocol to practice code caching.

ANTS is designed at MIT as an active network platform
with two distinctive design features [17, 18]. First, ANTS
supports customized code execution to provide various net-
work services. Second, ANTS supports the establishment and
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deployment of new protocols. In ANTS, capsules carry user
code and data to achieve these design features. A hierarchical
capsule model is specified to support various application
requirements. When a capsule arrives at an active router, the
active router checks the protocol of this capsule. If the router
does not have the protocol code, it sends a code-downloading
request back to the previous active router. The capsules are
then kept provisional until the required code is prepared. If
all required code segments are prepared, the capsules are
awakened and ANTS continues the execution.

In ANTS, capsules and protocols are defined in Java files.
An ANTS application consists of the following files: a main
program, definitions of capsules and protocols, and script
files. The script files contain a configuration table, a routing
table, and a start file that is used to activate the service.
The configuration table has the following information: the
physical IP address, the logical IP address for a specified
ANTS application, and the network port. The Janos virtual
machine receives capsules from the fixed network ports and
dispatches these capsules to different domains according to
the logical IP information.

The routing table records the routing information: the phys-
ical IP addresses, the logical IP addresses, and the network
ports of active routers. Active routers behave as the tunnels
because traditional routers may exist in current IP networks.
Due to the limitation of the current ANTS experimental
platform, the position of the active routers need to be explicitly
specified in the routing table. As specified in the routing table,
the capsules are transferred through the designated active
routers to the active routers.

ActiveRMI is designed to utilize the programmability ben-
efits of active networks to improve the performance of Java
RMI invocation with little extra programming efforts. Each
active router has an ActiveRMI code cache to keep RMI
service code. With the RMI code caches, the users repose
time is reduced and the scalability is enhanced because the
RMI services cached on the intermediate active routers can
satisfy the requests as soon as possible. In the ActiveRMI code
caching mechanism, a manager called ARMIMan maintains
the RMI service code execution and the code cache.

ActiveRMI applications use several capsules to cooper-

ate with ARMIMan and the registry: lookup, registry,
argument, and result. Figure 3 shows the format of an
ActiveRMI capsule. Since the underlying platform is ANTS,
the format of the ActiveRMI capsules follows the ANTS
capsule format. An RMI server uses registry capsules
to bind RMI service information to the registry. The client
sends lookup capsules to the registry to search for the RMI
services. The registry processes the lookup capsules and
then replies to the client with the registration information
and the corresponding stub. The client can then invoke the
stub to send argument capsules to the RMI server. When
ARMIMan detects argument capsules, it intercepts these
capsules and executes the RMI service code from the local
RMI code caches. When the request is satisfied, the client
stub gets the result capsules and replies the result to the
client applications.

ActiveRMI achieves three improvements. First, user re-
sponse time is reduced in ActiveRMI compared with the
traditional Java RMI. Second, the server workload is shared
with the active routers. The centralized bottleneck problem
is alleviated. Third, the amount of network traffic between
the clients and the RMI server is reduced because the active
routers act as the agents to intercept client requests and
execute the cached services immediately. More details can be
found in [19, 20, 21].

B. Related Load Sharing and Balancing Schemes

Even after several decades, distributed load sharing and
balancing is still a growing research area for distributed com-
puting (e.g [8, 9, 23, 22]). In active networks, studies on dis-
tributed load sharing and balancing have been also conducted
to employ the advantages embedded in programmability. In
2000, Yoshihara et al. proposed a dynamic load balancing
scheme for distributed management in active networks [23].
To perform load balancing on remote servers, management
scripts are dynamically downloaded to and executed on the
active routers according to the average CPU utilization of
the system and the needed network bandwidth. However, in
their distributed management paradigm, they do not consider
how to migrate the remote services to the nearby active
routers. In addition, they focus on the load balancing of
distributed management rather than remote services. Since
the management system does not directly respond the client
requests, the hot-spot phenomenon of request burst rarely
occurs as a serious problem. By contrast, ActiveRMI considers
service migration in the native design. ActiveRMI needs to
directly handle the request burst problem with a more request-
centric load sharing scheme.

In Active Anycast, Miura et al. proposed a mechanism to
dynamically dispatch client requests to a lightly loaded remote
server with active routers [9]. The client sends the requests as
the original Anycast design. The active routers on the transfer
path change the destination address according to the collected
load information. Therefore, Active Anycast achieves a good
performance of load balancing. From their simulation results,
Active Anycast shows significant improvements with only a
small number of active routers in a WAN environment.

From the viewpoint mentioned in [12], the approach incor-
porated in Active Anycast is a load sharing scheme. However,
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in Active Anycast, the native benefits of the programmability
and the capability of deploying new services in active net-
works are not incorporated in the system design. The loads are
shared between remote replicated servers, not active routers.
Since the hop count of the communication path may be large,
the average user response time could be still lengthy if some
intermediate active routers are heavily loaded. By contrast,
ActiveRMI exploits the native benefits of the programmability
and the capability of deploying new services in active net-
works to migrate remote services to the nearby active routers.
The length of the communication path between a client and
the service destination is thus minimized as possible.

In 2001, Yamaguchi and Maruyama proposed a distributed
load balancing scheme in the CAPE system [22]. A peer-to-
peer (P2P) load balancing protocol takes the responsibility
of load balancing. The P2P feature makes load balancing
in the CAPE system truly distributed. However, since the
load information in this P2P scheme is exchanged with a
broadcasting mechanism, the system scale is thus limited to
a small range. On the contrary, the load sharing information
in our proposed scheme is exchanged in a small group of
active routers. Therefore, our proposed scheme can be highly
scalable.

III. THE LOAD SHARING SCHEME

The proposed load sharing scheme is a dynamic sender-
initiated distributed scheme. Load dispatching depends on
the current system state rather than on a predefined sharing
scheme such as hashing. Several design issues needed to be
discussed in this dynamic sender-initiated scheme, such as the
scope of the load dispatching and the selection policy. In the
following, we first describe the system architecture to which
the proposed load sharing scheme is applied. Then the design
considerations are elaborated.

A. The System Architecture

The system architecture discussed in this paper is assumed
to be a pure active environment as shown in Figure 4 to clearly
elaborate our proposed dynamic sender-initiated distributed
load sharing scheme. In this pure environment, all routers
are active routers. All clients, active routers, and servers
can execute the ActiveRMI protocol. Since traditional routers

only perform packet forwarding operations, this assumption
does not loose any generality if the environment has some
traditional routers on the communication paths.

The active routers are further classified into two categories:
the edge active routers and the core active routers. The edge
active routers are the routers closest to the clients and the
servers. Therefore, they may intercept a large number of client
requests. Other active routers are core routers which are the
intermediate routers between two edge active routers.

B. Distributed Load Sharing

Several issues need to be discussed in our proposed dynamic
sender-initiated distributed scheme, including load indexes, the
transfer policy, the information policy, and the location policy.
They are elaborated as follows.

1) Load Indexes and Transfer Policy: This is the key
issue to design a distributed load sharing scheme for active
networks. Since the number of execution environments (EE)
is dynamically changed as the active router is running, and is
an effective approximation for system resource consumption
such as the average CPU utilization, the average number of EE
queue length over some period, AV QEE , is considered. When
AV QEE of an active router is larger than an administrator-
defined threshold THAV Q, the active router (sender) starts
the load sharing scheme to try to transfer its load to another
lightly loaded active router. If AV QEE of the destination
active router is lower than its THAV Q, the router accepts the
sharing request and starts to run the EE. Otherwise, it rejects
the the sharing request, and the sender tries to find another
possible destination.

To avoid suffering long network latency by selecting a
very remote active router as the migration destination, the
network transfer latency Ltrans and an upper bound of the
hop count HOPmax are also considered. They are used to
control the farthest migration boundary to avoid the potential
message flooding over the whole networks. The router whose
Ltrans is larger than the threshold THtrans or whose hop
count is larger than HOPmax will not be considered as a
destination candidate. Since Ltrans is changed as time varies,
the boundary will be also dynamically changed as new load
information is collected.
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Figure 5 shows an example in which we assume that
HOPmax of the active router E1 is set as two, and the latency
to the routers which are inside the hop count boundary is
smaller than E1’s THtrans. Therefore, the routers E3, R1,
R2, and R3 are formed as the possible sharing group of E1.

However, the sharing group is not symmetric. The formation
of a sharing group totally depends on the configuration of each
active router. That is, the sharing group of E3 does not include
E1 if E3’s HOPmax is one.

2) Information Policy: Since the proposed scheme is a
distributed scheme, each active router needs to collect the
load information of the member nodes in its sharing group.
Here a periodical gossip model is used to propagate the load
information. In this model, each node just collects information
from its neighbor nodes, and maintains a load table to record
the load information of the active routers in its sharing group
and the sharing groups of its neighbor nodes. At the mean
time, it also broadcasts its load information to the neighbor
nodes. For example, R1 may have an empty sharing group,
but it still records E3’s load information because E1 needs
this information. Although the collected information may not
be very accurate in this model, this approach avoids message
flooding overheads.

3) Location Policy: Since the sender has the load infor-
mation of all active routers, it can create a receiver list in the
load-decreasing order. Then the sender shares the service load
with the nodes in the order of the receiver list and adjusts the
load information to update the receiver list accordingly. If the
selected node is overloaded when sharing is initiated (this may
happen because there is a time gap to reflect the most up-to-
date load information), the next node in the list is selected.

IV. SIMULATION STUDY

To study the performance of the proposed load sharing
scheme, we have conducted preliminary simulation experi-
ments. In the experiments, we assumed that all routers were
active routers. The context switching time and the EE startup
time were negligible. The services had been all cached in
each routers. The processing power of each active router was
represented by THAV Q. The range of the service workloads
was randomly generated between 100 and 1000 time units.

The communication latency between clients and the edge
routers was 10 time units, and the latency between two routers
1 time unit. In the simulation, the sharing boundary was
controlled only by HOPmax for the simplicity sake.

Fig. 6. The experimental simulation results.

Figure 6 shows the simulation results. In the figure,
HOPmax = 0 means no load sharing, and HOPmax = 2
means the sharing is performed in the range of 2 hops. From
the figure, we can notice that the load of the active routers
can be effectively shared.

Interestingly, we also notice that the average response time
is slightly increased when some service loads are shared
with remote active routers. The main reason is that our load
index mainly considers the system queue length, but neglects
the communication overhead. However, the influence is very
small, and can be negligible.

V. CONCLUSIONS AND FUTURE WORK

Load sharing is a crucial issue in distributed computing. In
the past ActiveRMI design, this issue has not been considered
completely. Although ActiveRMI shows its prominence to the
traditional Java RMI programming paradigm, the front edge
active routers may still become the performance bottleneck
if a vast number of client requests burst into these routers.
Therefore, a load sharing scheme is required to relieve this
potential performance bottleneck.



In this paper, we propose a dynamic server-initiated dis-
tributed load sharing scheme for ActiveRMI. There are two
major design goals. First, the average user response time
can be reduced by sharing loads of overloaded active routers
with other nearby active routers which are lightly loaded or
moderately loaded. Second, the overhead incurred by load
sharing transfer is kept minimal by initiating the transfer on
demand.

To study the performance improvements, we have con-
ducted simulation experiments. Although the experiment is
preliminary, the results show that the performance of Ac-
tiveRMI with load sharing support is superior to the perfor-
mance of ActiveRMI without load sharing support.

To conclude, the proposed load sharing scheme indeed
improves the bottleneck problem in the traditional ActiveRMI
paradigm. However, many practical implementation issues
need to be further discussed. For example, how to piratically
define the load information in real systems is one of the
challenging implementation problems. In the future, we plan
to conduct experiments to study the network performance
of ActiveRMI with load sharing support in a large scale
environment.
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